Your IP : 3.15.211.55
3
\( � @ s� d Z ddlmZmZ dddddgZG dd� ded �ZG d
d� de�Zeje� G dd� de�Z e je
� G dd� de �ZG d
d� de�Zeje
� dS )z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
TODO: Fill out more detailed documentation on the operators.� )�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc @ s e Zd ZdZf ZdZdS )r z�All numbers inherit from this class.
If you just want to check if an argument x is a number, without
caring what kind, use isinstance(x, Number).
N)�__name__�
__module__�__qualname__�__doc__� __slots__�__hash__� r r �/usr/lib64/python3.6/numbers.pyr s )� metaclassc @ s� e Zd ZdZf Zedd� �Zdd� Zeedd� ��Z eedd � ��Z
ed
d� �Zedd
� �Zedd� �Z
edd� �Zdd� Zdd� Zedd� �Zedd� �Zedd� �Zedd� �Zedd� �Zed d!� �Zed"d#� �Zed$d%� �Zed&d'� �Zd(S ))r aa Complex defines the operations that work on the builtin complex type.
In short, those are: a conversion to complex, .real, .imag, +, -,
*, /, abs(), .conjugate, ==, and !=.
If it is given heterogenous arguments, and doesn't have special
knowledge about them, it should fall back to the builtin complex
type as described below.
c C s dS )z<Return a builtin complex instance. Called for complex(self).Nr )�selfr r r �__complex__- s zComplex.__complex__c C s | dkS )z)True if self != 0. Called for bool(self).r r )r r r r �__bool__1 s zComplex.__bool__c C s t �dS )zXRetrieve the real component of this number.
This should subclass Real.
N)�NotImplementedError)r r r r �real5 s zComplex.realc C s t �dS )z]Retrieve the imaginary component of this number.
This should subclass Real.
N)r )r r r r �imag>