Your IP : 18.216.208.243
/*
* Copyright (c) 2013-2014 by Farsight Security, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/*! \file
* \mainpage Introduction
*
* This is `fstrm`, a C implementation of the Frame Streams data transport
* protocol.
*
* Frame Streams is a light weight, binary clean protocol that allows for the
* transport of arbitrarily encoded data payload sequences with minimal framing
* overhead -- just four bytes per data frame. Frame Streams does not specify an
* encoding format for data frames and can be used with any data serialization
* format that produces byte sequences, such as [Protocol Buffers], [XML],
* [JSON], [MessagePack], [YAML], etc. Frame Streams can be used as both a
* streaming transport over a reliable byte stream socket (TCP sockets, TLS
* connections, `AF_UNIX` sockets, etc.) for data in motion as well as a file
* format for data at rest. A "Content Type" header identifies the type of
* payload being carried over an individual Frame Stream and allows cooperating
* programs to determine how to interpret a given sequence of data payloads.
*
* `fstrm` is an optimized C implementation of Frame Streams that includes a
* fast, lockless circular queue implementation and exposes library interfaces
* for setting up a dedicated Frame Streams I/O thread and asynchronously
* submitting data frames for transport from worker threads. It was originally
* written to facilitate the addition of high speed binary logging to DNS
* servers written in C using the [dnstap] log format.
*
* This is the API documentation for the `fstrm` library. For the project
* hosting site, see <https://github.com/farsightsec/fstrm>.
*
* \authors Farsight Security, Inc. and the `fstrm` authors.
*
* \copyright 2013-2018. Licensed under the terms of the [MIT] license.
*
* [Protocol Buffers]: https://developers.google.com/protocol-buffers/
* [XML]: http://www.w3.org/TR/xml11/
* [JSON]: http://www.json.org/
* [MessagePack]: http://msgpack.org/
* [YAML]: http://www.yaml.org/
* [dnstap]: http://dnstap.info/
* [MIT]: https://opensource.org/licenses/MIT
*
* \page overview Library overview
*
* \section init Initializing the library
*
* `fstrm` has no global library state. In most cases, only a single
* \ref fstrm_iothr library context object will be needed for the entire process,
* which will implicitly create a background I/O serialization thread. This I/O
* thread is bound to a particular output writer (for example, an `AF_UNIX`
* socket) and is fully buffered -- submitted data frames will be accumulated in
* an output buffer and periodically flushed, minimizing the number of system
* calls that need to be performed. This frees worker threads from waiting for a
* write() to complete.
*
* `fstrm` abstracts the actual I/O operations needed to read or write a byte
* stream. File and socket I/O implementations are included in the library, but
* if necessary `fstrm` can be extended to support new types of byte stream
* transports. See the \ref fstrm_reader, \ref fstrm_writer, and \ref fstrm_rdwr
* interfaces for details.
*
* The following code example shows the initialization of an `fstrm_iothr`
* library context object connected to an \ref fstrm_file writer.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const char *file_path = "/tmp/output.fs";
struct fstrm_file_options *fopt;
struct fstrm_iothr *iothr;
struct fstrm_writer *writer;
fopt = fstrm_file_options_init();
fstrm_file_options_set_file_path(fopt, file_path);
writer = fstrm_file_writer_init(fopt, NULL);
if (!writer) {
fprintf(stderr, "Error: fstrm_file_writer_init() failed.\n");
exit(EXIT_FAILURE);
}
iothr = fstrm_iothr_init(NULL, &writer);
if (!iothr) {
fprintf(stderr, "Error: fstrm_iothr_init() failed.\n");
exit(EXIT_FAILURE);
}
fstrm_file_options_destroy(&fopt);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Since the I/O operations are abstracted through the `fstrm_writer` interface,
* the `writer` variable in the above example could instead have been
* initialized with a completely different implementation. For example,
* \ref fstrm_unix_writer objects can be initialized as follows:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
const char *socket_path = "/tmp/output.sock";
struct fstrm_writer *writer;
struct fstrm_unix_writer_options *uwopt;
uwopt = fstrm_unix_writer_options_init();
fstrm_unix_writer_options_set_socket_path(uwopt, socket_path);
writer = fstrm_unix_writer_init(uwopt, NULL);
if (!writer) {
fprintf(stderr, "Error: fstrm_unix_writer_init() failed.\n");
exit(EXIT_FAILURE);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* \section queue Getting an input queue
*
* After the `fstrm_iothr` object has been created with fstrm_iothr_init(), an
* input queue handle can be obtained with the fstrm_iothr_get_input_queue()
* function, which returns an `fstrm_iothr_queue` object. This function is
* thread-safe and returns a unique queue each time it is called, up to the
* number of queues specified by fstrm_iothr_options_set_num_input_queues().
* `fstrm_iothr_queue` objects belong to their parent `fstrm_iothr` object and
* will be destroyed when the parent `fstrm_iothr` object is destroyed.
*
* The following code example shows a single `fstrm_iothr_queue` handle being
* obtained from an already initialized `fstrm_iothr` library context object.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// 'iothr' is a struct fstrm_iothr *
struct fstrm_iothr_queue *ioq;
ioq = fstrm_iothr_get_input_queue(iothr);
if (!ioq) {
fprintf(stderr, "Error: fstrm_iothr_get_input_queue() failed.\n");
exit(EXIT_FAILURE);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* \section submit Submitting data frames
*
* Once the `fstrm_iothr` object has been created and an `fstrm_iothr_queue`
* handle is available, data frames can be submitted for asynchronous writing
* using the fstrm_iothr_submit() function. A callback is passed to this
* function which will be invoked to deallocate the data frame once the I/O
* thread has completed processing it. In the common case where the data frame
* is dynamically allocated with `malloc()`, the deallocation callback must call
* `free()`. fstrm_free_wrapper() is provided as a convenience function which
* does this and can be specified as the `free_func` parameter to
* fstrm_iothr_submit().
*
* If space is available in the queue, fstrm_iothr_submit() will return
* #fstrm_res_success, indicating that ownership of the memory allocation for the
* data frame has passed from the caller to the library. The caller must not
* reuse or deallocate the memory for the data frame after a successful call to
* fstrm_iothr_submit().
*
* Callers must check the return value of fstrm_iothr_submit(). If this function
* fails, that is, it returns any result code other than #fstrm_res_success, the
* caller must deallocate or otherwise dispose of memory allocated for the data
* frame, in order to avoid leaking memory. fstrm_iothr_submit() can fail with
* #fstrm_res_again if there is currently no space in the circular queue for an
* additional frame, in which case a later call to fstrm_iothr_submit() with the
* same parameters may succeed. However, if fstrm_iothr_submit() fails with
* #fstrm_res_invalid, then there is a problem with the parameters and a later
* call will not succeed.
*
* The following code example shows data frames containing a short sequence of
* bytes being created and submitted repeatedly, with appropriate error
* handling. Note that the data frames in this example intentionally contain
* embedded unprintable characters, showing that Frame Streams is binary clean.
* This example follows from the previous examples, where the `iothr` and `ioq`
* variables have already been initialized.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// 'iothr' is a struct fstrm_iothr *
// 'ioq' is a struct fstrm_queue *
const unsigned num_frames = 100;
const uint8_t frame_template[] = {
'H', 'e', 'l', 'l', 'o', 0x00, 0x01, 0x02, 0x03,
'W', 'o', 'r', 'l', 'd', 0x04, 0x05, 0x06, 0x07,
};
for (unsigned i = 0; i < num_frames; i++) {
// Allocate a new frame from the template.
uint8_t *frame = malloc(sizeof(frame_template));
if (!frame)
break;
memcpy(frame, frame_template, sizeof(frame_template));
// Submit the frame for writing.
for (;;) {
fstrm_res res;
res = fstrm_iothr_submit(iothr, ioq, frame,
sizeof(frame_template),
fstrm_free_wrapper, NULL);
if (res == fstrm_res_success) {
// Frame successfully queued.
break;
} else if (res == fstrm_res_again) {
// Queue is full. Try again in a busy loop.
// Alternatively, if loss can be tolerated we
// could free the frame here and break out of
// the loop.
continue;
} else {
// Permanent failure.
free(frame);
fputs("fstrm_iothr_submit() failed.\n", stderr);
break;
}
}
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* \section shutdown Shutting down
*
* Calling fstrm_iothr_destroy() on the `fstrm_iothr` object will signal the I/O
* thread to flush any outstanding data frames being written and will deallocate
* all associated resources. This function is synchronous and does not return
* until the I/O thread has terminated.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// 'iothr' is a struct fstrm_iothr *
fstrm_iothr_destroy(&iothr);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#ifndef FSTRM_H
#define FSTRM_H
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/uio.h>
#include <stddef.h>
#include <stdint.h>
/**
* \defgroup fstrm_res fstrm_res
*
* Library result codes.
* @{
*/
/**
* Result codes for functions.
*/
typedef enum {
/** Success. */
fstrm_res_success,
/** Failure. */
fstrm_res_failure,
/** Resource temporarily unavailable. */
fstrm_res_again,
/** Parameters were invalid. */
fstrm_res_invalid,
/** The end of a stream has been reached. */
fstrm_res_stop,
} fstrm_res;
/**@}*/
struct fstrm_control;
struct fstrm_file_options;
struct fstrm_iothr;
struct fstrm_iothr_options;
struct fstrm_iothr_queue;
struct fstrm_rdwr;
struct fstrm_reader_options;
struct fstrm_unix_writer_options;
struct fstrm_writer;
struct fstrm_writer_options;
#include <fstrm/control.h>
#include <fstrm/file.h>
#include <fstrm/iothr.h>
#include <fstrm/rdwr.h>
#include <fstrm/reader.h>
#include <fstrm/tcp_writer.h>
#include <fstrm/unix_writer.h>
#include <fstrm/writer.h>
#ifdef __cplusplus
}
#endif
#endif /* FSTRM_H */