Your IP : 3.145.166.108
# orm/decl_base.py
# Copyright (C) 2005-2024 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
"""Internal implementation for declarative."""
from __future__ import annotations
import collections
import dataclasses
import re
from typing import Any
from typing import Callable
from typing import cast
from typing import Dict
from typing import Iterable
from typing import List
from typing import Mapping
from typing import NamedTuple
from typing import NoReturn
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
import weakref
from . import attributes
from . import clsregistry
from . import exc as orm_exc
from . import instrumentation
from . import mapperlib
from ._typing import _O
from ._typing import attr_is_internal_proxy
from .attributes import InstrumentedAttribute
from .attributes import QueryableAttribute
from .base import _is_mapped_class
from .base import InspectionAttr
from .descriptor_props import CompositeProperty
from .descriptor_props import SynonymProperty
from .interfaces import _AttributeOptions
from .interfaces import _DCAttributeOptions
from .interfaces import _IntrospectsAnnotations
from .interfaces import _MappedAttribute
from .interfaces import _MapsColumns
from .interfaces import MapperProperty
from .mapper import Mapper
from .properties import ColumnProperty
from .properties import MappedColumn
from .util import _extract_mapped_subtype
from .util import _is_mapped_annotation
from .util import class_mapper
from .util import de_stringify_annotation
from .. import event
from .. import exc
from .. import util
from ..sql import expression
from ..sql.base import _NoArg
from ..sql.schema import Column
from ..sql.schema import Table
from ..util import topological
from ..util.typing import _AnnotationScanType
from ..util.typing import is_fwd_ref
from ..util.typing import is_literal
from ..util.typing import Protocol
from ..util.typing import TypedDict
from ..util.typing import typing_get_args
if TYPE_CHECKING:
from ._typing import _ClassDict
from ._typing import _RegistryType
from .base import Mapped
from .decl_api import declared_attr
from .instrumentation import ClassManager
from ..sql.elements import NamedColumn
from ..sql.schema import MetaData
from ..sql.selectable import FromClause
_T = TypeVar("_T", bound=Any)
_MapperKwArgs = Mapping[str, Any]
_TableArgsType = Union[Tuple[Any, ...], Dict[str, Any]]
class MappedClassProtocol(Protocol[_O]):
"""A protocol representing a SQLAlchemy mapped class.
The protocol is generic on the type of class, use
``MappedClassProtocol[Any]`` to allow any mapped class.
"""
__name__: str
__mapper__: Mapper[_O]
__table__: FromClause
def __call__(self, **kw: Any) -> _O: ...
class _DeclMappedClassProtocol(MappedClassProtocol[_O], Protocol):
"Internal more detailed version of ``MappedClassProtocol``."
metadata: MetaData
__tablename__: str
__mapper_args__: _MapperKwArgs
__table_args__: Optional[_TableArgsType]
_sa_apply_dc_transforms: Optional[_DataclassArguments]
def __declare_first__(self) -> None: ...
def __declare_last__(self) -> None: ...
class _DataclassArguments(TypedDict):
init: Union[_NoArg, bool]
repr: Union[_NoArg, bool]
eq: Union[_NoArg, bool]
order: Union[_NoArg, bool]
unsafe_hash: Union[_NoArg, bool]
match_args: Union[_NoArg, bool]
kw_only: Union[_NoArg, bool]
dataclass_callable: Union[_NoArg, Callable[..., Type[Any]]]
def _declared_mapping_info(
cls: Type[Any],
) -> Optional[Union[_DeferredMapperConfig, Mapper[Any]]]:
# deferred mapping
if _DeferredMapperConfig.has_cls(cls):
return _DeferredMapperConfig.config_for_cls(cls)
# regular mapping
elif _is_mapped_class(cls):
return class_mapper(cls, configure=False)
else:
return None
def _is_supercls_for_inherits(cls: Type[Any]) -> bool:
"""return True if this class will be used as a superclass to set in
'inherits'.
This includes deferred mapper configs that aren't mapped yet, however does
not include classes with _sa_decl_prepare_nocascade (e.g.
``AbstractConcreteBase``); these concrete-only classes are not set up as
"inherits" until after mappers are configured using
mapper._set_concrete_base()
"""
if _DeferredMapperConfig.has_cls(cls):
return not _get_immediate_cls_attr(
cls, "_sa_decl_prepare_nocascade", strict=True
)
# regular mapping
elif _is_mapped_class(cls):
return True
else:
return False
def _resolve_for_abstract_or_classical(cls: Type[Any]) -> Optional[Type[Any]]:
if cls is object:
return None
sup: Optional[Type[Any]]
if cls.__dict__.get("__abstract__", False):
for base_ in cls.__bases__:
sup = _resolve_for_abstract_or_classical(base_)
if sup is not None:
return sup
else:
return None
else:
clsmanager = _dive_for_cls_manager(cls)
if clsmanager:
return clsmanager.class_
else:
return cls
def _get_immediate_cls_attr(
cls: Type[Any], attrname: str, strict: bool = False
) -> Optional[Any]:
"""return an attribute of the class that is either present directly
on the class, e.g. not on a superclass, or is from a superclass but
this superclass is a non-mapped mixin, that is, not a descendant of
the declarative base and is also not classically mapped.
This is used to detect attributes that indicate something about
a mapped class independently from any mapped classes that it may
inherit from.
"""
# the rules are different for this name than others,
# make sure we've moved it out. transitional
assert attrname != "__abstract__"
if not issubclass(cls, object):
return None
if attrname in cls.__dict__:
return getattr(cls, attrname)
for base in cls.__mro__[1:]:
_is_classical_inherits = _dive_for_cls_manager(base) is not None
if attrname in base.__dict__ and (
base is cls
or (
(base in cls.__bases__ if strict else True)
and not _is_classical_inherits
)
):
return getattr(base, attrname)
else:
return None
def _dive_for_cls_manager(cls: Type[_O]) -> Optional[ClassManager[_O]]:
# because the class manager registration is pluggable,
# we need to do the search for every class in the hierarchy,
# rather than just a simple "cls._sa_class_manager"
for base in cls.__mro__:
manager: Optional[ClassManager[_O]] = attributes.opt_manager_of_class(
base
)
if manager:
return manager
return None
def _as_declarative(
registry: _RegistryType, cls: Type[Any], dict_: _ClassDict
) -> Optional[_MapperConfig]:
# declarative scans the class for attributes. no table or mapper
# args passed separately.
return _MapperConfig.setup_mapping(registry, cls, dict_, None, {})
def _mapper(
registry: _RegistryType,
cls: Type[_O],
table: Optional[FromClause],
mapper_kw: _MapperKwArgs,
) -> Mapper[_O]:
_ImperativeMapperConfig(registry, cls, table, mapper_kw)
return cast("MappedClassProtocol[_O]", cls).__mapper__
@util.preload_module("sqlalchemy.orm.decl_api")
def _is_declarative_props(obj: Any) -> bool:
_declared_attr_common = util.preloaded.orm_decl_api._declared_attr_common
return isinstance(obj, (_declared_attr_common, util.classproperty))
def _check_declared_props_nocascade(
obj: Any, name: str, cls: Type[_O]
) -> bool:
if _is_declarative_props(obj):
if getattr(obj, "_cascading", False):
util.warn(
"@declared_attr.cascading is not supported on the %s "
"attribute on class %s. This attribute invokes for "
"subclasses in any case." % (name, cls)
)
return True
else:
return False
class _MapperConfig:
__slots__ = (
"cls",
"classname",
"properties",
"declared_attr_reg",
"__weakref__",
)
cls: Type[Any]
classname: str
properties: util.OrderedDict[
str,
Union[
Sequence[NamedColumn[Any]], NamedColumn[Any], MapperProperty[Any]
],
]
declared_attr_reg: Dict[declared_attr[Any], Any]
@classmethod
def setup_mapping(
cls,
registry: _RegistryType,
cls_: Type[_O],
dict_: _ClassDict,
table: Optional[FromClause],
mapper_kw: _MapperKwArgs,
) -> Optional[_MapperConfig]:
manager = attributes.opt_manager_of_class(cls)
if manager and manager.class_ is cls_:
raise exc.InvalidRequestError(
f"Class {cls!r} already has been instrumented declaratively"
)
if cls_.__dict__.get("__abstract__", False):
return None
defer_map = _get_immediate_cls_attr(
cls_, "_sa_decl_prepare_nocascade", strict=True
) or hasattr(cls_, "_sa_decl_prepare")
if defer_map:
return _DeferredMapperConfig(
registry, cls_, dict_, table, mapper_kw
)
else:
return _ClassScanMapperConfig(
registry, cls_, dict_, table, mapper_kw
)
def __init__(
self,
registry: _RegistryType,
cls_: Type[Any],
mapper_kw: _MapperKwArgs,
):
self.cls = util.assert_arg_type(cls_, type, "cls_")
self.classname = cls_.__name__
self.properties = util.OrderedDict()
self.declared_attr_reg = {}
if not mapper_kw.get("non_primary", False):
instrumentation.register_class(
self.cls,
finalize=False,
registry=registry,
declarative_scan=self,
init_method=registry.constructor,
)
else:
manager = attributes.opt_manager_of_class(self.cls)
if not manager or not manager.is_mapped:
raise exc.InvalidRequestError(
"Class %s has no primary mapper configured. Configure "
"a primary mapper first before setting up a non primary "
"Mapper." % self.cls
)
def set_cls_attribute(self, attrname: str, value: _T) -> _T:
manager = instrumentation.manager_of_class(self.cls)
manager.install_member(attrname, value)
return value
def map(self, mapper_kw: _MapperKwArgs = ...) -> Mapper[Any]:
raise NotImplementedError()
def _early_mapping(self, mapper_kw: _MapperKwArgs) -> None:
self.map(mapper_kw)
class _ImperativeMapperConfig(_MapperConfig):
__slots__ = ("local_table", "inherits")
def __init__(
self,
registry: _RegistryType,
cls_: Type[_O],
table: Optional[FromClause],
mapper_kw: _MapperKwArgs,
):
super().__init__(registry, cls_, mapper_kw)
self.local_table = self.set_cls_attribute("__table__", table)
with mapperlib._CONFIGURE_MUTEX:
if not mapper_kw.get("non_primary", False):
clsregistry.add_class(
self.classname, self.cls, registry._class_registry
)
self._setup_inheritance(mapper_kw)
self._early_mapping(mapper_kw)
def map(self, mapper_kw: _MapperKwArgs = util.EMPTY_DICT) -> Mapper[Any]:
mapper_cls = Mapper
return self.set_cls_attribute(
"__mapper__",
mapper_cls(self.cls, self.local_table, **mapper_kw),
)
def _setup_inheritance(self, mapper_kw: _MapperKwArgs) -> None:
cls = self.cls
inherits = mapper_kw.get("inherits", None)
if inherits is None:
# since we search for classical mappings now, search for
# multiple mapped bases as well and raise an error.
inherits_search = []
for base_ in cls.__bases__:
c = _resolve_for_abstract_or_classical(base_)
if c is None:
continue
if _is_supercls_for_inherits(c) and c not in inherits_search:
inherits_search.append(c)
if inherits_search:
if len(inherits_search) > 1:
raise exc.InvalidRequestError(
"Class %s has multiple mapped bases: %r"
% (cls, inherits_search)
)
inherits = inherits_search[0]
elif isinstance(inherits, Mapper):
inherits = inherits.class_
self.inherits = inherits
class _CollectedAnnotation(NamedTuple):
raw_annotation: _AnnotationScanType
mapped_container: Optional[Type[Mapped[Any]]]
extracted_mapped_annotation: Union[Type[Any], str]
is_dataclass: bool
attr_value: Any
originating_module: str
originating_class: Type[Any]
class _ClassScanMapperConfig(_MapperConfig):
__slots__ = (
"registry",
"clsdict_view",
"collected_attributes",
"collected_annotations",
"local_table",
"persist_selectable",
"declared_columns",
"column_ordering",
"column_copies",
"table_args",
"tablename",
"mapper_args",
"mapper_args_fn",
"table_fn",
"inherits",
"single",
"allow_dataclass_fields",
"dataclass_setup_arguments",
"is_dataclass_prior_to_mapping",
"allow_unmapped_annotations",
)
is_deferred = False
registry: _RegistryType
clsdict_view: _ClassDict
collected_annotations: Dict[str, _CollectedAnnotation]
collected_attributes: Dict[str, Any]
local_table: Optional[FromClause]
persist_selectable: Optional[FromClause]
declared_columns: util.OrderedSet[Column[Any]]
column_ordering: Dict[Column[Any], int]
column_copies: Dict[
Union[MappedColumn[Any], Column[Any]],
Union[MappedColumn[Any], Column[Any]],
]
tablename: Optional[str]
mapper_args: Mapping[str, Any]
table_args: Optional[_TableArgsType]
mapper_args_fn: Optional[Callable[[], Dict[str, Any]]]
inherits: Optional[Type[Any]]
single: bool
is_dataclass_prior_to_mapping: bool
allow_unmapped_annotations: bool
dataclass_setup_arguments: Optional[_DataclassArguments]
"""if the class has SQLAlchemy native dataclass parameters, where
we will turn the class into a dataclass within the declarative mapping
process.
"""
allow_dataclass_fields: bool
"""if true, look for dataclass-processed Field objects on the target
class as well as superclasses and extract ORM mapping directives from
the "metadata" attribute of each Field.
if False, dataclass fields can still be used, however they won't be
mapped.
"""
def __init__(
self,
registry: _RegistryType,
cls_: Type[_O],
dict_: _ClassDict,
table: Optional[FromClause],
mapper_kw: _MapperKwArgs,
):
# grab class dict before the instrumentation manager has been added.
# reduces cycles
self.clsdict_view = (
util.immutabledict(dict_) if dict_ else util.EMPTY_DICT
)
super().__init__(registry, cls_, mapper_kw)
self.registry = registry
self.persist_selectable = None
self.collected_attributes = {}
self.collected_annotations = {}
self.declared_columns = util.OrderedSet()
self.column_ordering = {}
self.column_copies = {}
self.single = False
self.dataclass_setup_arguments = dca = getattr(
self.cls, "_sa_apply_dc_transforms", None
)
self.allow_unmapped_annotations = getattr(
self.cls, "__allow_unmapped__", False
) or bool(self.dataclass_setup_arguments)
self.is_dataclass_prior_to_mapping = cld = dataclasses.is_dataclass(
cls_
)
sdk = _get_immediate_cls_attr(cls_, "__sa_dataclass_metadata_key__")
# we don't want to consume Field objects from a not-already-dataclass.
# the Field objects won't have their "name" or "type" populated,
# and while it seems like we could just set these on Field as we
# read them, Field is documented as "user read only" and we need to
# stay far away from any off-label use of dataclasses APIs.
if (not cld or dca) and sdk:
raise exc.InvalidRequestError(
"SQLAlchemy mapped dataclasses can't consume mapping "
"information from dataclass.Field() objects if the immediate "
"class is not already a dataclass."
)
# if already a dataclass, and __sa_dataclass_metadata_key__ present,
# then also look inside of dataclass.Field() objects yielded by
# dataclasses.get_fields(cls) when scanning for attributes
self.allow_dataclass_fields = bool(sdk and cld)
self._setup_declared_events()
self._scan_attributes()
self._setup_dataclasses_transforms()
with mapperlib._CONFIGURE_MUTEX:
clsregistry.add_class(
self.classname, self.cls, registry._class_registry
)
self._setup_inheriting_mapper(mapper_kw)
self._extract_mappable_attributes()
self._extract_declared_columns()
self._setup_table(table)
self._setup_inheriting_columns(mapper_kw)
self._early_mapping(mapper_kw)
def _setup_declared_events(self) -> None:
if _get_immediate_cls_attr(self.cls, "__declare_last__"):
@event.listens_for(Mapper, "after_configured")
def after_configured() -> None:
cast(
"_DeclMappedClassProtocol[Any]", self.cls
).__declare_last__()
if _get_immediate_cls_attr(self.cls, "__declare_first__"):
@event.listens_for(Mapper, "before_configured")
def before_configured() -> None:
cast(
"_DeclMappedClassProtocol[Any]", self.cls
).__declare_first__()
def _cls_attr_override_checker(
self, cls: Type[_O]
) -> Callable[[str, Any], bool]:
"""Produce a function that checks if a class has overridden an
attribute, taking SQLAlchemy-enabled dataclass fields into account.
"""
if self.allow_dataclass_fields:
sa_dataclass_metadata_key = _get_immediate_cls_attr(
cls, "__sa_dataclass_metadata_key__"
)
else:
sa_dataclass_metadata_key = None
if not sa_dataclass_metadata_key:
def attribute_is_overridden(key: str, obj: Any) -> bool:
return getattr(cls, key, obj) is not obj
else:
all_datacls_fields = {
f.name: f.metadata[sa_dataclass_metadata_key]
for f in util.dataclass_fields(cls)
if sa_dataclass_metadata_key in f.metadata
}
local_datacls_fields = {
f.name: f.metadata[sa_dataclass_metadata_key]
for f in util.local_dataclass_fields(cls)
if sa_dataclass_metadata_key in f.metadata
}
absent = object()
def attribute_is_overridden(key: str, obj: Any) -> bool:
if _is_declarative_props(obj):
obj = obj.fget
# this function likely has some failure modes still if
# someone is doing a deep mixing of the same attribute
# name as plain Python attribute vs. dataclass field.
ret = local_datacls_fields.get(key, absent)
if _is_declarative_props(ret):
ret = ret.fget
if ret is obj:
return False
elif ret is not absent:
return True
all_field = all_datacls_fields.get(key, absent)
ret = getattr(cls, key, obj)
if ret is obj:
return False
# for dataclasses, this could be the
# 'default' of the field. so filter more specifically
# for an already-mapped InstrumentedAttribute
if ret is not absent and isinstance(
ret, InstrumentedAttribute
):
return True
if all_field is obj:
return False
elif all_field is not absent:
return True
# can't find another attribute
return False
return attribute_is_overridden
_include_dunders = {
"__table__",
"__mapper_args__",
"__tablename__",
"__table_args__",
}
_match_exclude_dunders = re.compile(r"^(?:_sa_|__)")
def _cls_attr_resolver(
self, cls: Type[Any]
) -> Callable[[], Iterable[Tuple[str, Any, Any, bool]]]:
"""produce a function to iterate the "attributes" of a class
which we want to consider for mapping, adjusting for SQLAlchemy fields
embedded in dataclass fields.
"""
cls_annotations = util.get_annotations(cls)
cls_vars = vars(cls)
_include_dunders = self._include_dunders
_match_exclude_dunders = self._match_exclude_dunders
names = [
n
for n in util.merge_lists_w_ordering(
list(cls_vars), list(cls_annotations)
)
if not _match_exclude_dunders.match(n) or n in _include_dunders
]
if self.allow_dataclass_fields:
sa_dataclass_metadata_key: Optional[str] = _get_immediate_cls_attr(
cls, "__sa_dataclass_metadata_key__"
)
else:
sa_dataclass_metadata_key = None
if not sa_dataclass_metadata_key:
def local_attributes_for_class() -> (
Iterable[Tuple[str, Any, Any, bool]]
):
return (
(
name,
cls_vars.get(name),
cls_annotations.get(name),
False,
)
for name in names
)
else:
dataclass_fields = {
field.name: field for field in util.local_dataclass_fields(cls)
}
fixed_sa_dataclass_metadata_key = sa_dataclass_metadata_key
def local_attributes_for_class() -> (
Iterable[Tuple[str, Any, Any, bool]]
):
for name in names:
field = dataclass_fields.get(name, None)
if field and sa_dataclass_metadata_key in field.metadata:
yield field.name, _as_dc_declaredattr(
field.metadata, fixed_sa_dataclass_metadata_key
), cls_annotations.get(field.name), True
else:
yield name, cls_vars.get(name), cls_annotations.get(
name
), False
return local_attributes_for_class
def _scan_attributes(self) -> None:
cls = self.cls
cls_as_Decl = cast("_DeclMappedClassProtocol[Any]", cls)
clsdict_view = self.clsdict_view
collected_attributes = self.collected_attributes
column_copies = self.column_copies
_include_dunders = self._include_dunders
mapper_args_fn = None
table_args = inherited_table_args = None
table_fn = None
tablename = None
fixed_table = "__table__" in clsdict_view
attribute_is_overridden = self._cls_attr_override_checker(self.cls)
bases = []
for base in cls.__mro__:
# collect bases and make sure standalone columns are copied
# to be the column they will ultimately be on the class,
# so that declared_attr functions use the right columns.
# need to do this all the way up the hierarchy first
# (see #8190)
class_mapped = base is not cls and _is_supercls_for_inherits(base)
local_attributes_for_class = self._cls_attr_resolver(base)
if not class_mapped and base is not cls:
locally_collected_columns = self._produce_column_copies(
local_attributes_for_class,
attribute_is_overridden,
fixed_table,
base,
)
else:
locally_collected_columns = {}
bases.append(
(
base,
class_mapped,
local_attributes_for_class,
locally_collected_columns,
)
)
for (
base,
class_mapped,
local_attributes_for_class,
locally_collected_columns,
) in bases:
# this transfer can also take place as we scan each name
# for finer-grained control of how collected_attributes is
# populated, as this is what impacts column ordering.
# however it's simpler to get it out of the way here.
collected_attributes.update(locally_collected_columns)
for (
name,
obj,
annotation,
is_dataclass_field,
) in local_attributes_for_class():
if name in _include_dunders:
if name == "__mapper_args__":
check_decl = _check_declared_props_nocascade(
obj, name, cls
)
if not mapper_args_fn and (
not class_mapped or check_decl
):
# don't even invoke __mapper_args__ until
# after we've determined everything about the
# mapped table.
# make a copy of it so a class-level dictionary
# is not overwritten when we update column-based
# arguments.
def _mapper_args_fn() -> Dict[str, Any]:
return dict(cls_as_Decl.__mapper_args__)
mapper_args_fn = _mapper_args_fn
elif name == "__tablename__":
check_decl = _check_declared_props_nocascade(
obj, name, cls
)
if not tablename and (not class_mapped or check_decl):
tablename = cls_as_Decl.__tablename__
elif name == "__table__":
check_decl = _check_declared_props_nocascade(
obj, name, cls
)
# if a @declared_attr using "__table__" is detected,
# wrap up a callable to look for "__table__" from
# the final concrete class when we set up a table.
# this was fixed by
# #11509, regression in 2.0 from version 1.4.
if check_decl and not table_fn:
# don't even invoke __table__ until we're ready
def _table_fn() -> FromClause:
return cls_as_Decl.__table__
table_fn = _table_fn
elif name == "__table_args__":
check_decl = _check_declared_props_nocascade(
obj, name, cls
)
if not table_args and (not class_mapped or check_decl):
table_args = cls_as_Decl.__table_args__
if not isinstance(
table_args, (tuple, dict, type(None))
):
raise exc.ArgumentError(
"__table_args__ value must be a tuple, "
"dict, or None"
)
if base is not cls:
inherited_table_args = True
else:
# any other dunder names; should not be here
# as we have tested for all four names in
# _include_dunders
assert False
elif class_mapped:
if _is_declarative_props(obj) and not obj._quiet:
util.warn(
"Regular (i.e. not __special__) "
"attribute '%s.%s' uses @declared_attr, "
"but owning class %s is mapped - "
"not applying to subclass %s."
% (base.__name__, name, base, cls)
)
continue
elif base is not cls:
# we're a mixin, abstract base, or something that is
# acting like that for now.
if isinstance(obj, (Column, MappedColumn)):
# already copied columns to the mapped class.
continue
elif isinstance(obj, MapperProperty):
raise exc.InvalidRequestError(
"Mapper properties (i.e. deferred,"
"column_property(), relationship(), etc.) must "
"be declared as @declared_attr callables "
"on declarative mixin classes. For dataclass "
"field() objects, use a lambda:"
)
elif _is_declarative_props(obj):
# tried to get overloads to tell this to
# pylance, no luck
assert obj is not None
if obj._cascading:
if name in clsdict_view:
# unfortunately, while we can use the user-
# defined attribute here to allow a clean
# override, if there's another
# subclass below then it still tries to use
# this. not sure if there is enough
# information here to add this as a feature
# later on.
util.warn(
"Attribute '%s' on class %s cannot be "
"processed due to "
"@declared_attr.cascading; "
"skipping" % (name, cls)
)
collected_attributes[name] = column_copies[obj] = (
ret
) = obj.__get__(obj, cls)
setattr(cls, name, ret)
else:
if is_dataclass_field:
# access attribute using normal class access
# first, to see if it's been mapped on a
# superclass. note if the dataclasses.field()
# has "default", this value can be anything.
ret = getattr(cls, name, None)
# so, if it's anything that's not ORM
# mapped, assume we should invoke the
# declared_attr
if not isinstance(ret, InspectionAttr):
ret = obj.fget()
else:
# access attribute using normal class access.
# if the declared attr already took place
# on a superclass that is mapped, then
# this is no longer a declared_attr, it will
# be the InstrumentedAttribute
ret = getattr(cls, name)
# correct for proxies created from hybrid_property
# or similar. note there is no known case that
# produces nested proxies, so we are only
# looking one level deep right now.
if (
isinstance(ret, InspectionAttr)
and attr_is_internal_proxy(ret)
and not isinstance(
ret.original_property, MapperProperty
)
):
ret = ret.descriptor
collected_attributes[name] = column_copies[obj] = (
ret
)
if (
isinstance(ret, (Column, MapperProperty))
and ret.doc is None
):
ret.doc = obj.__doc__
self._collect_annotation(
name,
obj._collect_return_annotation(),
base,
True,
obj,
)
elif _is_mapped_annotation(annotation, cls, base):
# Mapped annotation without any object.
# product_column_copies should have handled this.
# if future support for other MapperProperty,
# then test if this name is already handled and
# otherwise proceed to generate.
if not fixed_table:
assert (
name in collected_attributes
or attribute_is_overridden(name, None)
)
continue
else:
# here, the attribute is some other kind of
# property that we assume is not part of the
# declarative mapping. however, check for some
# more common mistakes
self._warn_for_decl_attributes(base, name, obj)
elif is_dataclass_field and (
name not in clsdict_view or clsdict_view[name] is not obj
):
# here, we are definitely looking at the target class
# and not a superclass. this is currently a
# dataclass-only path. if the name is only
# a dataclass field and isn't in local cls.__dict__,
# put the object there.
# assert that the dataclass-enabled resolver agrees
# with what we are seeing
assert not attribute_is_overridden(name, obj)
if _is_declarative_props(obj):
obj = obj.fget()
collected_attributes[name] = obj
self._collect_annotation(
name, annotation, base, False, obj
)
else:
collected_annotation = self._collect_annotation(
name, annotation, base, None, obj
)
is_mapped = (
collected_annotation is not None
and collected_annotation.mapped_container is not None
)
generated_obj = (
collected_annotation.attr_value
if collected_annotation is not None
else obj
)
if obj is None and not fixed_table and is_mapped:
collected_attributes[name] = (
generated_obj
if generated_obj is not None
else MappedColumn()
)
elif name in clsdict_view:
collected_attributes[name] = obj
# else if the name is not in the cls.__dict__,
# don't collect it as an attribute.
# we will see the annotation only, which is meaningful
# both for mapping and dataclasses setup
if inherited_table_args and not tablename:
table_args = None
self.table_args = table_args
self.tablename = tablename
self.mapper_args_fn = mapper_args_fn
self.table_fn = table_fn
def _setup_dataclasses_transforms(self) -> None:
dataclass_setup_arguments = self.dataclass_setup_arguments
if not dataclass_setup_arguments:
return
# can't use is_dataclass since it uses hasattr
if "__dataclass_fields__" in self.cls.__dict__:
raise exc.InvalidRequestError(
f"Class {self.cls} is already a dataclass; ensure that "
"base classes / decorator styles of establishing dataclasses "
"are not being mixed. "
"This can happen if a class that inherits from "
"'MappedAsDataclass', even indirectly, is been mapped with "
"'@registry.mapped_as_dataclass'"
)
warn_for_non_dc_attrs = collections.defaultdict(list)
def _allow_dataclass_field(
key: str, originating_class: Type[Any]
) -> bool:
if (
originating_class is not self.cls
and "__dataclass_fields__" not in originating_class.__dict__
):
warn_for_non_dc_attrs[originating_class].append(key)
return True
manager = instrumentation.manager_of_class(self.cls)
assert manager is not None
field_list = [
_AttributeOptions._get_arguments_for_make_dataclass(
key,
anno,
mapped_container,
self.collected_attributes.get(key, _NoArg.NO_ARG),
)
for key, anno, mapped_container in (
(
key,
mapped_anno if mapped_anno else raw_anno,
mapped_container,
)
for key, (
raw_anno,
mapped_container,
mapped_anno,
is_dc,
attr_value,
originating_module,
originating_class,
) in self.collected_annotations.items()
if _allow_dataclass_field(key, originating_class)
and (
key not in self.collected_attributes
# issue #9226; check for attributes that we've collected
# which are already instrumented, which we would assume
# mean we are in an ORM inheritance mapping and this
# attribute is already mapped on the superclass. Under
# no circumstance should any QueryableAttribute be sent to
# the dataclass() function; anything that's mapped should
# be Field and that's it
or not isinstance(
self.collected_attributes[key], QueryableAttribute
)
)
)
]
if warn_for_non_dc_attrs:
for (
originating_class,
non_dc_attrs,
) in warn_for_non_dc_attrs.items():
util.warn_deprecated(
f"When transforming {self.cls} to a dataclass, "
f"attribute(s) "
f"{', '.join(repr(key) for key in non_dc_attrs)} "
f"originates from superclass "
f"{originating_class}, which is not a dataclass. This "
f"usage is deprecated and will raise an error in "
f"SQLAlchemy 2.1. When declaring SQLAlchemy Declarative "
f"Dataclasses, ensure that all mixin classes and other "
f"superclasses which include attributes are also a "
f"subclass of MappedAsDataclass.",
"2.0",
code="dcmx",
)
annotations = {}
defaults = {}
for item in field_list:
if len(item) == 2:
name, tp = item
elif len(item) == 3:
name, tp, spec = item
defaults[name] = spec
else:
assert False
annotations[name] = tp
for k, v in defaults.items():
setattr(self.cls, k, v)
self._apply_dataclasses_to_any_class(
dataclass_setup_arguments, self.cls, annotations
)
@classmethod
def _update_annotations_for_non_mapped_class(
cls, klass: Type[_O]
) -> Mapping[str, _AnnotationScanType]:
cls_annotations = util.get_annotations(klass)
new_anno = {}
for name, annotation in cls_annotations.items():
if _is_mapped_annotation(annotation, klass, klass):
extracted = _extract_mapped_subtype(
annotation,
klass,
klass.__module__,
name,
type(None),
required=False,
is_dataclass_field=False,
expect_mapped=False,
)
if extracted:
inner, _ = extracted
new_anno[name] = inner
else:
new_anno[name] = annotation
return new_anno
@classmethod
def _apply_dataclasses_to_any_class(
cls,
dataclass_setup_arguments: _DataclassArguments,
klass: Type[_O],
use_annotations: Mapping[str, _AnnotationScanType],
) -> None:
cls._assert_dc_arguments(dataclass_setup_arguments)
dataclass_callable = dataclass_setup_arguments["dataclass_callable"]
if dataclass_callable is _NoArg.NO_ARG:
dataclass_callable = dataclasses.dataclass
restored: Optional[Any]
if use_annotations:
# apply constructed annotations that should look "normal" to a
# dataclasses callable, based on the fields present. This
# means remove the Mapped[] container and ensure all Field
# entries have an annotation
restored = getattr(klass, "__annotations__", None)
klass.__annotations__ = cast("Dict[str, Any]", use_annotations)
else:
restored = None
try:
dataclass_callable(
klass,
**{
k: v
for k, v in dataclass_setup_arguments.items()
if v is not _NoArg.NO_ARG and k != "dataclass_callable"
},
)
except (TypeError, ValueError) as ex:
raise exc.InvalidRequestError(
f"Python dataclasses error encountered when creating "
f"dataclass for {klass.__name__!r}: "
f"{ex!r}. Please refer to Python dataclasses "
"documentation for additional information.",
code="dcte",
) from ex
finally:
# restore original annotations outside of the dataclasses
# process; for mixins and __abstract__ superclasses, SQLAlchemy
# Declarative will need to see the Mapped[] container inside the
# annotations in order to map subclasses
if use_annotations:
if restored is None:
del klass.__annotations__
else:
klass.__annotations__ = restored
@classmethod
def _assert_dc_arguments(cls, arguments: _DataclassArguments) -> None:
allowed = {
"init",
"repr",
"order",
"eq",
"unsafe_hash",
"kw_only",
"match_args",
"dataclass_callable",
}
disallowed_args = set(arguments).difference(allowed)
if disallowed_args:
msg = ", ".join(f"{arg!r}" for arg in sorted(disallowed_args))
raise exc.ArgumentError(
f"Dataclass argument(s) {msg} are not accepted"
)
def _collect_annotation(
self,
name: str,
raw_annotation: _AnnotationScanType,
originating_class: Type[Any],
expect_mapped: Optional[bool],
attr_value: Any,
) -> Optional[_CollectedAnnotation]:
if name in self.collected_annotations:
return self.collected_annotations[name]
if raw_annotation is None:
return None
is_dataclass = self.is_dataclass_prior_to_mapping
allow_unmapped = self.allow_unmapped_annotations
if expect_mapped is None:
is_dataclass_field = isinstance(attr_value, dataclasses.Field)
expect_mapped = (
not is_dataclass_field
and not allow_unmapped
and (
attr_value is None
or isinstance(attr_value, _MappedAttribute)
)
)
else:
is_dataclass_field = False
is_dataclass_field = False
extracted = _extract_mapped_subtype(
raw_annotation,
self.cls,
originating_class.__module__,
name,
type(attr_value),
required=False,
is_dataclass_field=is_dataclass_field,
expect_mapped=expect_mapped
and not is_dataclass, # self.allow_dataclass_fields,
)
if extracted is None:
# ClassVar can come out here
return None
extracted_mapped_annotation, mapped_container = extracted
if attr_value is None and not is_literal(extracted_mapped_annotation):
for elem in typing_get_args(extracted_mapped_annotation):
if isinstance(elem, str) or is_fwd_ref(
elem, check_generic=True
):
elem = de_stringify_annotation(
self.cls,
elem,
originating_class.__module__,
include_generic=True,
)
# look in Annotated[...] for an ORM construct,
# such as Annotated[int, mapped_column(primary_key=True)]
if isinstance(elem, _IntrospectsAnnotations):
attr_value = elem.found_in_pep593_annotated()
self.collected_annotations[name] = ca = _CollectedAnnotation(
raw_annotation,
mapped_container,
extracted_mapped_annotation,
is_dataclass,
attr_value,
originating_class.__module__,
originating_class,
)
return ca
def _warn_for_decl_attributes(
self, cls: Type[Any], key: str, c: Any
) -> None:
if isinstance(c, expression.ColumnElement):
util.warn(
f"Attribute '{key}' on class {cls} appears to "
"be a non-schema SQLAlchemy expression "
"object; this won't be part of the declarative mapping. "
"To map arbitrary expressions, use ``column_property()`` "
"or a similar function such as ``deferred()``, "
"``query_expression()`` etc. "
)
def _produce_column_copies(
self,
attributes_for_class: Callable[
[], Iterable[Tuple[str, Any, Any, bool]]
],
attribute_is_overridden: Callable[[str, Any], bool],
fixed_table: bool,
originating_class: Type[Any],
) -> Dict[str, Union[Column[Any], MappedColumn[Any]]]:
cls = self.cls
dict_ = self.clsdict_view
locally_collected_attributes = {}
column_copies = self.column_copies
# copy mixin columns to the mapped class
for name, obj, annotation, is_dataclass in attributes_for_class():
if (
not fixed_table
and obj is None
and _is_mapped_annotation(annotation, cls, originating_class)
):
# obj is None means this is the annotation only path
if attribute_is_overridden(name, obj):
# perform same "overridden" check as we do for
# Column/MappedColumn, this is how a mixin col is not
# applied to an inherited subclass that does not have
# the mixin. the anno-only path added here for
# #9564
continue
collected_annotation = self._collect_annotation(
name, annotation, originating_class, True, obj
)
obj = (
collected_annotation.attr_value
if collected_annotation is not None
else obj
)
if obj is None:
obj = MappedColumn()
locally_collected_attributes[name] = obj
setattr(cls, name, obj)
elif isinstance(obj, (Column, MappedColumn)):
if attribute_is_overridden(name, obj):
# if column has been overridden
# (like by the InstrumentedAttribute of the
# superclass), skip. don't collect the annotation
# either (issue #8718)
continue
collected_annotation = self._collect_annotation(
name, annotation, originating_class, True, obj
)
obj = (
collected_annotation.attr_value
if collected_annotation is not None
else obj
)
if name not in dict_ and not (
"__table__" in dict_
and (getattr(obj, "name", None) or name)
in dict_["__table__"].c
):
if obj.foreign_keys:
for fk in obj.foreign_keys:
if (
fk._table_column is not None
and fk._table_column.table is None
):
raise exc.InvalidRequestError(
"Columns with foreign keys to "
"non-table-bound "
"columns must be declared as "
"@declared_attr callables "
"on declarative mixin classes. "
"For dataclass "
"field() objects, use a lambda:."
)
column_copies[obj] = copy_ = obj._copy()
locally_collected_attributes[name] = copy_
setattr(cls, name, copy_)
return locally_collected_attributes
def _extract_mappable_attributes(self) -> None:
cls = self.cls
collected_attributes = self.collected_attributes
our_stuff = self.properties
_include_dunders = self._include_dunders
late_mapped = _get_immediate_cls_attr(
cls, "_sa_decl_prepare_nocascade", strict=True
)
allow_unmapped_annotations = self.allow_unmapped_annotations
expect_annotations_wo_mapped = (
allow_unmapped_annotations or self.is_dataclass_prior_to_mapping
)
look_for_dataclass_things = bool(self.dataclass_setup_arguments)
for k in list(collected_attributes):
if k in _include_dunders:
continue
value = collected_attributes[k]
if _is_declarative_props(value):
# @declared_attr in collected_attributes only occurs here for a
# @declared_attr that's directly on the mapped class;
# for a mixin, these have already been evaluated
if value._cascading:
util.warn(
"Use of @declared_attr.cascading only applies to "
"Declarative 'mixin' and 'abstract' classes. "
"Currently, this flag is ignored on mapped class "
"%s" % self.cls
)
value = getattr(cls, k)
elif (
isinstance(value, QueryableAttribute)
and value.class_ is not cls
and value.key != k
):
# detect a QueryableAttribute that's already mapped being
# assigned elsewhere in userland, turn into a synonym()
value = SynonymProperty(value.key)
setattr(cls, k, value)
if (
isinstance(value, tuple)
and len(value) == 1
and isinstance(value[0], (Column, _MappedAttribute))
):
util.warn(
"Ignoring declarative-like tuple value of attribute "
"'%s': possibly a copy-and-paste error with a comma "
"accidentally placed at the end of the line?" % k
)
continue
elif look_for_dataclass_things and isinstance(
value, dataclasses.Field
):
# we collected a dataclass Field; dataclasses would have
# set up the correct state on the class
continue
elif not isinstance(value, (Column, _DCAttributeOptions)):
# using @declared_attr for some object that
# isn't Column/MapperProperty/_DCAttributeOptions; remove
# from the clsdict_view
# and place the evaluated value onto the class.
collected_attributes.pop(k)
self._warn_for_decl_attributes(cls, k, value)
if not late_mapped:
setattr(cls, k, value)
continue
# we expect to see the name 'metadata' in some valid cases;
# however at this point we see it's assigned to something trying
# to be mapped, so raise for that.
# TODO: should "registry" here be also? might be too late
# to change that now (2.0 betas)
elif k in ("metadata",):
raise exc.InvalidRequestError(
f"Attribute name '{k}' is reserved when using the "
"Declarative API."
)
elif isinstance(value, Column):
_undefer_column_name(
k, self.column_copies.get(value, value) # type: ignore
)
else:
if isinstance(value, _IntrospectsAnnotations):
(
annotation,
mapped_container,
extracted_mapped_annotation,
is_dataclass,
attr_value,
originating_module,
originating_class,
) = self.collected_annotations.get(
k, (None, None, None, False, None, None, None)
)
# issue #8692 - don't do any annotation interpretation if
# an annotation were present and a container such as
# Mapped[] etc. were not used. If annotation is None,
# do declarative_scan so that the property can raise
# for required
if (
mapped_container is not None
or annotation is None
# issue #10516: need to do declarative_scan even with
# a non-Mapped annotation if we are doing
# __allow_unmapped__, for things like col.name
# assignment
or allow_unmapped_annotations
):
try:
value.declarative_scan(
self,
self.registry,
cls,
originating_module,
k,
mapped_container,
annotation,
extracted_mapped_annotation,
is_dataclass,
)
except NameError as ne:
raise exc.ArgumentError(
f"Could not resolve all types within mapped "
f'annotation: "{annotation}". Ensure all '
f"types are written correctly and are "
f"imported within the module in use."
) from ne
else:
# assert that we were expecting annotations
# without Mapped[] were going to be passed.
# otherwise an error should have been raised
# by util._extract_mapped_subtype before we got here.
assert expect_annotations_wo_mapped
if isinstance(value, _DCAttributeOptions):
if (
value._has_dataclass_arguments
and not look_for_dataclass_things
):
if isinstance(value, MapperProperty):
argnames = [
"init",
"default_factory",
"repr",
"default",
]
else:
argnames = ["init", "default_factory", "repr"]
args = {
a
for a in argnames
if getattr(
value._attribute_options, f"dataclasses_{a}"
)
is not _NoArg.NO_ARG
}
raise exc.ArgumentError(
f"Attribute '{k}' on class {cls} includes "
f"dataclasses argument(s): "
f"{', '.join(sorted(repr(a) for a in args))} but "
f"class does not specify "
"SQLAlchemy native dataclass configuration."
)
if not isinstance(value, (MapperProperty, _MapsColumns)):
# filter for _DCAttributeOptions objects that aren't
# MapperProperty / mapped_column(). Currently this
# includes AssociationProxy. pop it from the things
# we're going to map and set it up as a descriptor
# on the class.
collected_attributes.pop(k)
# Assoc Prox (or other descriptor object that may
# use _DCAttributeOptions) is usually here, except if
# 1. we're a
# dataclass, dataclasses would have removed the
# attr here or 2. assoc proxy is coming from a
# superclass, we want it to be direct here so it
# tracks state or 3. assoc prox comes from
# declared_attr, uncommon case
setattr(cls, k, value)
continue
our_stuff[k] = value
def _extract_declared_columns(self) -> None:
our_stuff = self.properties
# extract columns from the class dict
declared_columns = self.declared_columns
column_ordering = self.column_ordering
name_to_prop_key = collections.defaultdict(set)
for key, c in list(our_stuff.items()):
if isinstance(c, _MapsColumns):
mp_to_assign = c.mapper_property_to_assign
if mp_to_assign:
our_stuff[key] = mp_to_assign
else:
# if no mapper property to assign, this currently means
# this is a MappedColumn that will produce a Column for us
del our_stuff[key]
for col, sort_order in c.columns_to_assign:
if not isinstance(c, CompositeProperty):
name_to_prop_key[col.name].add(key)
declared_columns.add(col)
# we would assert this, however we want the below
# warning to take effect instead. See #9630
# assert col not in column_ordering
column_ordering[col] = sort_order
# if this is a MappedColumn and the attribute key we
# have is not what the column has for its key, map the
# Column explicitly under the attribute key name.
# otherwise, Mapper will map it under the column key.
if mp_to_assign is None and key != col.key:
our_stuff[key] = col
elif isinstance(c, Column):
# undefer previously occurred here, and now occurs earlier.
# ensure every column we get here has been named
assert c.name is not None
name_to_prop_key[c.name].add(key)
declared_columns.add(c)
# if the column is the same name as the key,
# remove it from the explicit properties dict.
# the normal rules for assigning column-based properties
# will take over, including precedence of columns
# in multi-column ColumnProperties.
if key == c.key:
del our_stuff[key]
for name, keys in name_to_prop_key.items():
if len(keys) > 1:
util.warn(
"On class %r, Column object %r named "
"directly multiple times, "
"only one will be used: %s. "
"Consider using orm.synonym instead"
% (self.classname, name, (", ".join(sorted(keys))))
)
def _setup_table(self, table: Optional[FromClause] = None) -> None:
cls = self.cls
cls_as_Decl = cast("MappedClassProtocol[Any]", cls)
tablename = self.tablename
table_args = self.table_args
clsdict_view = self.clsdict_view
declared_columns = self.declared_columns
column_ordering = self.column_ordering
manager = attributes.manager_of_class(cls)
if (
self.table_fn is None
and "__table__" not in clsdict_view
and table is None
):
if hasattr(cls, "__table_cls__"):
table_cls = cast(
Type[Table],
util.unbound_method_to_callable(cls.__table_cls__), # type: ignore # noqa: E501
)
else:
table_cls = Table
if tablename is not None:
args: Tuple[Any, ...] = ()
table_kw: Dict[str, Any] = {}
if table_args:
if isinstance(table_args, dict):
table_kw = table_args
elif isinstance(table_args, tuple):
if isinstance(table_args[-1], dict):
args, table_kw = table_args[0:-1], table_args[-1]
else:
args = table_args
autoload_with = clsdict_view.get("__autoload_with__")
if autoload_with:
table_kw["autoload_with"] = autoload_with
autoload = clsdict_view.get("__autoload__")
if autoload:
table_kw["autoload"] = True
sorted_columns = sorted(
declared_columns,
key=lambda c: column_ordering.get(c, 0),
)
table = self.set_cls_attribute(
"__table__",
table_cls(
tablename,
self._metadata_for_cls(manager),
*sorted_columns,
*args,
**table_kw,
),
)
else:
if table is None:
if self.table_fn:
table = self.set_cls_attribute(
"__table__", self.table_fn()
)
else:
table = cls_as_Decl.__table__
if declared_columns:
for c in declared_columns:
if not table.c.contains_column(c):
raise exc.ArgumentError(
"Can't add additional column %r when "
"specifying __table__" % c.key
)
self.local_table = table
def _metadata_for_cls(self, manager: ClassManager[Any]) -> MetaData:
meta: Optional[MetaData] = getattr(self.cls, "metadata", None)
if meta is not None:
return meta
else:
return manager.registry.metadata
def _setup_inheriting_mapper(self, mapper_kw: _MapperKwArgs) -> None:
cls = self.cls
inherits = mapper_kw.get("inherits", None)
if inherits is None:
# since we search for classical mappings now, search for
# multiple mapped bases as well and raise an error.
inherits_search = []
for base_ in cls.__bases__:
c = _resolve_for_abstract_or_classical(base_)
if c is None:
continue
if _is_supercls_for_inherits(c) and c not in inherits_search:
inherits_search.append(c)
if inherits_search:
if len(inherits_search) > 1:
raise exc.InvalidRequestError(
"Class %s has multiple mapped bases: %r"
% (cls, inherits_search)
)
inherits = inherits_search[0]
elif isinstance(inherits, Mapper):
inherits = inherits.class_
self.inherits = inherits
clsdict_view = self.clsdict_view
if "__table__" not in clsdict_view and self.tablename is None:
self.single = True
def _setup_inheriting_columns(self, mapper_kw: _MapperKwArgs) -> None:
table = self.local_table
cls = self.cls
table_args = self.table_args
declared_columns = self.declared_columns
if (
table is None
and self.inherits is None
and not _get_immediate_cls_attr(cls, "__no_table__")
):
raise exc.InvalidRequestError(
"Class %r does not have a __table__ or __tablename__ "
"specified and does not inherit from an existing "
"table-mapped class." % cls
)
elif self.inherits:
inherited_mapper_or_config = _declared_mapping_info(self.inherits)
assert inherited_mapper_or_config is not None
inherited_table = inherited_mapper_or_config.local_table
inherited_persist_selectable = (
inherited_mapper_or_config.persist_selectable
)
if table is None:
# single table inheritance.
# ensure no table args
if table_args:
raise exc.ArgumentError(
"Can't place __table_args__ on an inherited class "
"with no table."
)
# add any columns declared here to the inherited table.
if declared_columns and not isinstance(inherited_table, Table):
raise exc.ArgumentError(
f"Can't declare columns on single-table-inherited "
f"subclass {self.cls}; superclass {self.inherits} "
"is not mapped to a Table"
)
for col in declared_columns:
assert inherited_table is not None
if col.name in inherited_table.c:
if inherited_table.c[col.name] is col:
continue
raise exc.ArgumentError(
f"Column '{col}' on class {cls.__name__} "
f"conflicts with existing column "
f"'{inherited_table.c[col.name]}'. If using "
f"Declarative, consider using the "
"use_existing_column parameter of mapped_column() "
"to resolve conflicts."
)
if col.primary_key:
raise exc.ArgumentError(
"Can't place primary key columns on an inherited "
"class with no table."
)
if TYPE_CHECKING:
assert isinstance(inherited_table, Table)
inherited_table.append_column(col)
if (
inherited_persist_selectable is not None
and inherited_persist_selectable is not inherited_table
):
inherited_persist_selectable._refresh_for_new_column(
col
)
def _prepare_mapper_arguments(self, mapper_kw: _MapperKwArgs) -> None:
properties = self.properties
if self.mapper_args_fn:
mapper_args = self.mapper_args_fn()
else:
mapper_args = {}
if mapper_kw:
mapper_args.update(mapper_kw)
if "properties" in mapper_args:
properties = dict(properties)
properties.update(mapper_args["properties"])
# make sure that column copies are used rather
# than the original columns from any mixins
for k in ("version_id_col", "polymorphic_on"):
if k in mapper_args:
v = mapper_args[k]
mapper_args[k] = self.column_copies.get(v, v)
if "primary_key" in mapper_args:
mapper_args["primary_key"] = [
self.column_copies.get(v, v)
for v in util.to_list(mapper_args["primary_key"])
]
if "inherits" in mapper_args:
inherits_arg = mapper_args["inherits"]
if isinstance(inherits_arg, Mapper):
inherits_arg = inherits_arg.class_
if inherits_arg is not self.inherits:
raise exc.InvalidRequestError(
"mapper inherits argument given for non-inheriting "
"class %s" % (mapper_args["inherits"])
)
if self.inherits:
mapper_args["inherits"] = self.inherits
if self.inherits and not mapper_args.get("concrete", False):
# note the superclass is expected to have a Mapper assigned and
# not be a deferred config, as this is called within map()
inherited_mapper = class_mapper(self.inherits, False)
inherited_table = inherited_mapper.local_table
# single or joined inheritance
# exclude any cols on the inherited table which are
# not mapped on the parent class, to avoid
# mapping columns specific to sibling/nephew classes
if "exclude_properties" not in mapper_args:
mapper_args["exclude_properties"] = exclude_properties = {
c.key
for c in inherited_table.c
if c not in inherited_mapper._columntoproperty
}.union(inherited_mapper.exclude_properties or ())
exclude_properties.difference_update(
[c.key for c in self.declared_columns]
)
# look through columns in the current mapper that
# are keyed to a propname different than the colname
# (if names were the same, we'd have popped it out above,
# in which case the mapper makes this combination).
# See if the superclass has a similar column property.
# If so, join them together.
for k, col in list(properties.items()):
if not isinstance(col, expression.ColumnElement):
continue
if k in inherited_mapper._props:
p = inherited_mapper._props[k]
if isinstance(p, ColumnProperty):
# note here we place the subclass column
# first. See [ticket:1892] for background.
properties[k] = [col] + p.columns
result_mapper_args = mapper_args.copy()
result_mapper_args["properties"] = properties
self.mapper_args = result_mapper_args
def map(self, mapper_kw: _MapperKwArgs = util.EMPTY_DICT) -> Mapper[Any]:
self._prepare_mapper_arguments(mapper_kw)
if hasattr(self.cls, "__mapper_cls__"):
mapper_cls = cast(
"Type[Mapper[Any]]",
util.unbound_method_to_callable(
self.cls.__mapper_cls__ # type: ignore
),
)
else:
mapper_cls = Mapper
return self.set_cls_attribute(
"__mapper__",
mapper_cls(self.cls, self.local_table, **self.mapper_args),
)
@util.preload_module("sqlalchemy.orm.decl_api")
def _as_dc_declaredattr(
field_metadata: Mapping[str, Any], sa_dataclass_metadata_key: str
) -> Any:
# wrap lambdas inside dataclass fields inside an ad-hoc declared_attr.
# we can't write it because field.metadata is immutable :( so we have
# to go through extra trouble to compare these
decl_api = util.preloaded.orm_decl_api
obj = field_metadata[sa_dataclass_metadata_key]
if callable(obj) and not isinstance(obj, decl_api.declared_attr):
return decl_api.declared_attr(obj)
else:
return obj
class _DeferredMapperConfig(_ClassScanMapperConfig):
_cls: weakref.ref[Type[Any]]
is_deferred = True
_configs: util.OrderedDict[
weakref.ref[Type[Any]], _DeferredMapperConfig
] = util.OrderedDict()
def _early_mapping(self, mapper_kw: _MapperKwArgs) -> None:
pass
# mypy disallows plain property override of variable
@property # type: ignore
def cls(self) -> Type[Any]:
return self._cls() # type: ignore
@cls.setter
def cls(self, class_: Type[Any]) -> None:
self._cls = weakref.ref(class_, self._remove_config_cls)
self._configs[self._cls] = self
@classmethod
def _remove_config_cls(cls, ref: weakref.ref[Type[Any]]) -> None:
cls._configs.pop(ref, None)
@classmethod
def has_cls(cls, class_: Type[Any]) -> bool:
# 2.6 fails on weakref if class_ is an old style class
return isinstance(class_, type) and weakref.ref(class_) in cls._configs
@classmethod
def raise_unmapped_for_cls(cls, class_: Type[Any]) -> NoReturn:
if hasattr(class_, "_sa_raise_deferred_config"):
class_._sa_raise_deferred_config()
raise orm_exc.UnmappedClassError(
class_,
msg=(
f"Class {orm_exc._safe_cls_name(class_)} has a deferred "
"mapping on it. It is not yet usable as a mapped class."
),
)
@classmethod
def config_for_cls(cls, class_: Type[Any]) -> _DeferredMapperConfig:
return cls._configs[weakref.ref(class_)]
@classmethod
def classes_for_base(
cls, base_cls: Type[Any], sort: bool = True
) -> List[_DeferredMapperConfig]:
classes_for_base = [
m
for m, cls_ in [(m, m.cls) for m in cls._configs.values()]
if cls_ is not None and issubclass(cls_, base_cls)
]
if not sort:
return classes_for_base
all_m_by_cls = {m.cls: m for m in classes_for_base}
tuples: List[Tuple[_DeferredMapperConfig, _DeferredMapperConfig]] = []
for m_cls in all_m_by_cls:
tuples.extend(
(all_m_by_cls[base_cls], all_m_by_cls[m_cls])
for base_cls in m_cls.__bases__
if base_cls in all_m_by_cls
)
return list(topological.sort(tuples, classes_for_base))
def map(self, mapper_kw: _MapperKwArgs = util.EMPTY_DICT) -> Mapper[Any]:
self._configs.pop(self._cls, None)
return super().map(mapper_kw)
def _add_attribute(
cls: Type[Any], key: str, value: MapperProperty[Any]
) -> None:
"""add an attribute to an existing declarative class.
This runs through the logic to determine MapperProperty,
adds it to the Mapper, adds a column to the mapped Table, etc.
"""
if "__mapper__" in cls.__dict__:
mapped_cls = cast("MappedClassProtocol[Any]", cls)
def _table_or_raise(mc: MappedClassProtocol[Any]) -> Table:
if isinstance(mc.__table__, Table):
return mc.__table__
raise exc.InvalidRequestError(
f"Cannot add a new attribute to mapped class {mc.__name__!r} "
"because it's not mapped against a table."
)
if isinstance(value, Column):
_undefer_column_name(key, value)
_table_or_raise(mapped_cls).append_column(
value, replace_existing=True
)
mapped_cls.__mapper__.add_property(key, value)
elif isinstance(value, _MapsColumns):
mp = value.mapper_property_to_assign
for col, _ in value.columns_to_assign:
_undefer_column_name(key, col)
_table_or_raise(mapped_cls).append_column(
col, replace_existing=True
)
if not mp:
mapped_cls.__mapper__.add_property(key, col)
if mp:
mapped_cls.__mapper__.add_property(key, mp)
elif isinstance(value, MapperProperty):
mapped_cls.__mapper__.add_property(key, value)
elif isinstance(value, QueryableAttribute) and value.key != key:
# detect a QueryableAttribute that's already mapped being
# assigned elsewhere in userland, turn into a synonym()
value = SynonymProperty(value.key)
mapped_cls.__mapper__.add_property(key, value)
else:
type.__setattr__(cls, key, value)
mapped_cls.__mapper__._expire_memoizations()
else:
type.__setattr__(cls, key, value)
def _del_attribute(cls: Type[Any], key: str) -> None:
if (
"__mapper__" in cls.__dict__
and key in cls.__dict__
and not cast(
"MappedClassProtocol[Any]", cls
).__mapper__._dispose_called
):
value = cls.__dict__[key]
if isinstance(
value, (Column, _MapsColumns, MapperProperty, QueryableAttribute)
):
raise NotImplementedError(
"Can't un-map individual mapped attributes on a mapped class."
)
else:
type.__delattr__(cls, key)
cast(
"MappedClassProtocol[Any]", cls
).__mapper__._expire_memoizations()
else:
type.__delattr__(cls, key)
def _declarative_constructor(self: Any, **kwargs: Any) -> None:
"""A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and
values in ``kwargs``.
Only keys that are present as
attributes of the instance's class are allowed. These could be,
for example, any mapped columns or relationships.
"""
cls_ = type(self)
for k in kwargs:
if not hasattr(cls_, k):
raise TypeError(
"%r is an invalid keyword argument for %s" % (k, cls_.__name__)
)
setattr(self, k, kwargs[k])
_declarative_constructor.__name__ = "__init__"
def _undefer_column_name(key: str, column: Column[Any]) -> None:
if column.key is None:
column.key = key
if column.name is None:
column.name = key