Your IP : 18.119.138.124
import json
import math
import re
import struct
import sys
from peewee import *
from peewee import ColumnBase
from peewee import EnclosedNodeList
from peewee import Entity
from peewee import Expression
from peewee import Insert
from peewee import Node
from peewee import NodeList
from peewee import OP
from peewee import VirtualField
from peewee import merge_dict
from peewee import sqlite3
try:
from playhouse._sqlite_ext import (
backup,
backup_to_file,
Blob,
ConnectionHelper,
register_bloomfilter,
register_hash_functions,
register_rank_functions,
sqlite_get_db_status,
sqlite_get_status,
TableFunction,
ZeroBlob,
)
CYTHON_SQLITE_EXTENSIONS = True
except ImportError:
CYTHON_SQLITE_EXTENSIONS = False
if sys.version_info[0] == 3:
basestring = str
FTS3_MATCHINFO = 'pcx'
FTS4_MATCHINFO = 'pcnalx'
if sqlite3 is not None:
FTS_VERSION = 4 if sqlite3.sqlite_version_info[:3] >= (3, 7, 4) else 3
else:
FTS_VERSION = 3
FTS5_MIN_SQLITE_VERSION = (3, 9, 0)
class RowIDField(AutoField):
auto_increment = True
column_name = name = required_name = 'rowid'
def bind(self, model, name, *args):
if name != self.required_name:
raise ValueError('%s must be named "%s".' %
(type(self), self.required_name))
super(RowIDField, self).bind(model, name, *args)
class DocIDField(RowIDField):
column_name = name = required_name = 'docid'
class AutoIncrementField(AutoField):
def ddl(self, ctx):
node_list = super(AutoIncrementField, self).ddl(ctx)
return NodeList((node_list, SQL('AUTOINCREMENT')))
class TDecimalField(DecimalField):
field_type = 'TEXT'
def get_modifiers(self): pass
class JSONPath(ColumnBase):
def __init__(self, field, path=None):
super(JSONPath, self).__init__()
self._field = field
self._path = path or ()
@property
def path(self):
return Value('$%s' % ''.join(self._path))
def __getitem__(self, idx):
if isinstance(idx, int) or idx == '#':
item = '[%s]' % idx
else:
item = '.%s' % idx
return JSONPath(self._field, self._path + (item,))
def append(self, value, as_json=None):
if as_json or isinstance(value, (list, dict)):
value = fn.json(self._field._json_dumps(value))
return fn.json_set(self._field, self['#'].path, value)
def _json_operation(self, func, value, as_json=None):
if as_json or isinstance(value, (list, dict)):
value = fn.json(self._field._json_dumps(value))
return func(self._field, self.path, value)
def insert(self, value, as_json=None):
return self._json_operation(fn.json_insert, value, as_json)
def set(self, value, as_json=None):
return self._json_operation(fn.json_set, value, as_json)
def replace(self, value, as_json=None):
return self._json_operation(fn.json_replace, value, as_json)
def update(self, value):
return self.set(fn.json_patch(self, self._field._json_dumps(value)))
def remove(self):
return fn.json_remove(self._field, self.path)
def json_type(self):
return fn.json_type(self._field, self.path)
def length(self):
return fn.json_array_length(self._field, self.path)
def children(self):
return fn.json_each(self._field, self.path)
def tree(self):
return fn.json_tree(self._field, self.path)
def __sql__(self, ctx):
return ctx.sql(fn.json_extract(self._field, self.path)
if self._path else self._field)
class JSONField(TextField):
field_type = 'JSON'
unpack = False
def __init__(self, json_dumps=None, json_loads=None, **kwargs):
self._json_dumps = json_dumps or json.dumps
self._json_loads = json_loads or json.loads
super(JSONField, self).__init__(**kwargs)
def python_value(self, value):
if value is not None:
try:
return self._json_loads(value)
except (TypeError, ValueError):
return value
def db_value(self, value):
if value is not None:
if not isinstance(value, Node):
value = fn.json(self._json_dumps(value))
return value
def _e(op):
def inner(self, rhs):
if isinstance(rhs, (list, dict)):
rhs = Value(rhs, converter=self.db_value, unpack=False)
return Expression(self, op, rhs)
return inner
__eq__ = _e(OP.EQ)
__ne__ = _e(OP.NE)
__gt__ = _e(OP.GT)
__ge__ = _e(OP.GTE)
__lt__ = _e(OP.LT)
__le__ = _e(OP.LTE)
__hash__ = Field.__hash__
def __getitem__(self, item):
return JSONPath(self)[item]
def extract(self, *paths):
paths = [Value(p, converter=False) for p in paths]
return fn.json_extract(self, *paths)
def extract_json(self, path):
return Expression(self, '->', Value(path, converter=False))
def extract_text(self, path):
return Expression(self, '->>', Value(path, converter=False))
def append(self, value, as_json=None):
return JSONPath(self).append(value, as_json)
def insert(self, value, as_json=None):
return JSONPath(self).insert(value, as_json)
def set(self, value, as_json=None):
return JSONPath(self).set(value, as_json)
def replace(self, value, as_json=None):
return JSONPath(self).replace(value, as_json)
def update(self, data):
return JSONPath(self).update(data)
def remove(self, *paths):
if not paths:
return JSONPath(self).remove()
return fn.json_remove(self, *paths)
def json_type(self):
return fn.json_type(self)
def length(self, path=None):
args = (self, path) if path else (self,)
return fn.json_array_length(*args)
def children(self):
"""
Schema of `json_each` and `json_tree`:
key,
value,
type TEXT (object, array, string, etc),
atom (value for primitive/scalar types, NULL for array and object)
id INTEGER (unique identifier for element)
parent INTEGER (unique identifier of parent element or NULL)
fullkey TEXT (full path describing element)
path TEXT (path to the container of the current element)
json JSON hidden (1st input parameter to function)
root TEXT hidden (2nd input parameter, path at which to start)
"""
return fn.json_each(self)
def tree(self):
return fn.json_tree(self)
class SearchField(Field):
def __init__(self, unindexed=False, column_name=None, **k):
if k:
raise ValueError('SearchField does not accept these keyword '
'arguments: %s.' % sorted(k))
super(SearchField, self).__init__(unindexed=unindexed,
column_name=column_name, null=True)
def match(self, term):
return match(self, term)
@property
def fts_column_index(self):
if not hasattr(self, '_fts_column_index'):
search_fields = [f.name for f in self.model._meta.sorted_fields
if isinstance(f, SearchField)]
self._fts_column_index = search_fields.index(self.name)
return self._fts_column_index
def highlight(self, left, right):
column_idx = self.fts_column_index
return fn.highlight(self.model._meta.entity, column_idx, left, right)
def snippet(self, left, right, over_length='...', max_tokens=16):
if not (0 < max_tokens < 65):
raise ValueError('max_tokens must be between 1 and 64 (inclusive)')
column_idx = self.fts_column_index
return fn.snippet(self.model._meta.entity, column_idx, left, right,
over_length, max_tokens)
class VirtualTableSchemaManager(SchemaManager):
def _create_virtual_table(self, safe=True, **options):
options = self.model.clean_options(
merge_dict(self.model._meta.options, options))
# Structure:
# CREATE VIRTUAL TABLE <model>
# USING <extension_module>
# ([prefix_arguments, ...] fields, ... [arguments, ...], [options...])
ctx = self._create_context()
ctx.literal('CREATE VIRTUAL TABLE ')
if safe:
ctx.literal('IF NOT EXISTS ')
(ctx
.sql(self.model)
.literal(' USING '))
ext_module = self.model._meta.extension_module
if isinstance(ext_module, Node):
return ctx.sql(ext_module)
ctx.sql(SQL(ext_module)).literal(' ')
arguments = []
meta = self.model._meta
if meta.prefix_arguments:
arguments.extend([SQL(a) for a in meta.prefix_arguments])
# Constraints, data-types, foreign and primary keys are all omitted.
for field in meta.sorted_fields:
if isinstance(field, (RowIDField)) or field._hidden:
continue
field_def = [Entity(field.column_name)]
if field.unindexed:
field_def.append(SQL('UNINDEXED'))
arguments.append(NodeList(field_def))
if meta.arguments:
arguments.extend([SQL(a) for a in meta.arguments])
if options:
arguments.extend(self._create_table_option_sql(options))
return ctx.sql(EnclosedNodeList(arguments))
def _create_table(self, safe=True, **options):
if issubclass(self.model, VirtualModel):
return self._create_virtual_table(safe, **options)
return super(VirtualTableSchemaManager, self)._create_table(
safe, **options)
class VirtualModel(Model):
class Meta:
arguments = None
extension_module = None
prefix_arguments = None
primary_key = False
schema_manager_class = VirtualTableSchemaManager
@classmethod
def clean_options(cls, options):
return options
class BaseFTSModel(VirtualModel):
@classmethod
def clean_options(cls, options):
content = options.get('content')
prefix = options.get('prefix')
tokenize = options.get('tokenize')
if isinstance(content, basestring) and content == '':
# Special-case content-less full-text search tables.
options['content'] = "''"
elif isinstance(content, Field):
# Special-case to ensure fields are fully-qualified.
options['content'] = Entity(content.model._meta.table_name,
content.column_name)
if prefix:
if isinstance(prefix, (list, tuple)):
prefix = ','.join([str(i) for i in prefix])
options['prefix'] = "'%s'" % prefix.strip("' ")
if tokenize and cls._meta.extension_module.lower() == 'fts5':
# Tokenizers need to be in quoted string for FTS5, but not for FTS3
# or FTS4.
options['tokenize'] = '"%s"' % tokenize
return options
class FTSModel(BaseFTSModel):
"""
VirtualModel class for creating tables that use either the FTS3 or FTS4
search extensions. Peewee automatically determines which version of the
FTS extension is supported and will use FTS4 if possible.
"""
# FTS3/4 uses "docid" in the same way a normal table uses "rowid".
docid = DocIDField()
class Meta:
extension_module = 'FTS%s' % FTS_VERSION
@classmethod
def _fts_cmd(cls, cmd):
tbl = cls._meta.table_name
res = cls._meta.database.execute_sql(
"INSERT INTO %s(%s) VALUES('%s');" % (tbl, tbl, cmd))
return res.fetchone()
@classmethod
def optimize(cls):
return cls._fts_cmd('optimize')
@classmethod
def rebuild(cls):
return cls._fts_cmd('rebuild')
@classmethod
def integrity_check(cls):
return cls._fts_cmd('integrity-check')
@classmethod
def merge(cls, blocks=200, segments=8):
return cls._fts_cmd('merge=%s,%s' % (blocks, segments))
@classmethod
def automerge(cls, state=True):
return cls._fts_cmd('automerge=%s' % (state and '1' or '0'))
@classmethod
def match(cls, term):
"""
Generate a `MATCH` expression appropriate for searching this table.
"""
return match(cls._meta.entity, term)
@classmethod
def rank(cls, *weights):
matchinfo = fn.matchinfo(cls._meta.entity, FTS3_MATCHINFO)
return fn.fts_rank(matchinfo, *weights)
@classmethod
def bm25(cls, *weights):
match_info = fn.matchinfo(cls._meta.entity, FTS4_MATCHINFO)
return fn.fts_bm25(match_info, *weights)
@classmethod
def bm25f(cls, *weights):
match_info = fn.matchinfo(cls._meta.entity, FTS4_MATCHINFO)
return fn.fts_bm25f(match_info, *weights)
@classmethod
def lucene(cls, *weights):
match_info = fn.matchinfo(cls._meta.entity, FTS4_MATCHINFO)
return fn.fts_lucene(match_info, *weights)
@classmethod
def _search(cls, term, weights, with_score, score_alias, score_fn,
explicit_ordering):
if not weights:
rank = score_fn()
elif isinstance(weights, dict):
weight_args = []
for field in cls._meta.sorted_fields:
# Attempt to get the specified weight of the field by looking
# it up using it's field instance followed by name.
field_weight = weights.get(field, weights.get(field.name, 1.0))
weight_args.append(field_weight)
rank = score_fn(*weight_args)
else:
rank = score_fn(*weights)
selection = ()
order_by = rank
if with_score:
selection = (cls, rank.alias(score_alias))
if with_score and not explicit_ordering:
order_by = SQL(score_alias)
return (cls
.select(*selection)
.where(cls.match(term))
.order_by(order_by))
@classmethod
def search(cls, term, weights=None, with_score=False, score_alias='score',
explicit_ordering=False):
"""Full-text search using selected `term`."""
return cls._search(
term,
weights,
with_score,
score_alias,
cls.rank,
explicit_ordering)
@classmethod
def search_bm25(cls, term, weights=None, with_score=False,
score_alias='score', explicit_ordering=False):
"""Full-text search for selected `term` using BM25 algorithm."""
return cls._search(
term,
weights,
with_score,
score_alias,
cls.bm25,
explicit_ordering)
@classmethod
def search_bm25f(cls, term, weights=None, with_score=False,
score_alias='score', explicit_ordering=False):
"""Full-text search for selected `term` using BM25 algorithm."""
return cls._search(
term,
weights,
with_score,
score_alias,
cls.bm25f,
explicit_ordering)
@classmethod
def search_lucene(cls, term, weights=None, with_score=False,
score_alias='score', explicit_ordering=False):
"""Full-text search for selected `term` using BM25 algorithm."""
return cls._search(
term,
weights,
with_score,
score_alias,
cls.lucene,
explicit_ordering)
_alphabet = 'abcdefghijklmnopqrstuvwxyz'
_alphanum = (set('\t ,"(){}*:_+0123456789') |
set(_alphabet) |
set(_alphabet.upper()) |
set((chr(26),)))
_invalid_ascii = set(chr(p) for p in range(128) if chr(p) not in _alphanum)
del _alphabet
del _alphanum
_quote_re = re.compile(r'(?:[^\s"]|"(?:\\.|[^"])*")+')
class FTS5Model(BaseFTSModel):
"""
Requires SQLite >= 3.9.0.
Table options:
content: table name of external content, or empty string for "contentless"
content_rowid: column name of external content primary key
prefix: integer(s). Ex: '2' or '2 3 4'
tokenize: porter, unicode61, ascii. Ex: 'porter unicode61'
The unicode tokenizer supports the following parameters:
* remove_diacritics (1 or 0, default is 1)
* tokenchars (string of characters, e.g. '-_'
* separators (string of characters)
Parameters are passed as alternating parameter name and value, so:
{'tokenize': "unicode61 remove_diacritics 0 tokenchars '-_'"}
Content-less tables:
If you don't need the full-text content in it's original form, you can
specify a content-less table. Searches and auxiliary functions will work
as usual, but the only values returned when SELECT-ing can be rowid. Also
content-less tables do not support UPDATE or DELETE.
External content tables:
You can set up triggers to sync these, e.g.
-- Create a table. And an external content fts5 table to index it.
CREATE TABLE tbl(a INTEGER PRIMARY KEY, b);
CREATE VIRTUAL TABLE ft USING fts5(b, content='tbl', content_rowid='a');
-- Triggers to keep the FTS index up to date.
CREATE TRIGGER tbl_ai AFTER INSERT ON tbl BEGIN
INSERT INTO ft(rowid, b) VALUES (new.a, new.b);
END;
CREATE TRIGGER tbl_ad AFTER DELETE ON tbl BEGIN
INSERT INTO ft(fts_idx, rowid, b) VALUES('delete', old.a, old.b);
END;
CREATE TRIGGER tbl_au AFTER UPDATE ON tbl BEGIN
INSERT INTO ft(fts_idx, rowid, b) VALUES('delete', old.a, old.b);
INSERT INTO ft(rowid, b) VALUES (new.a, new.b);
END;
Built-in auxiliary functions:
* bm25(tbl[, weight_0, ... weight_n])
* highlight(tbl, col_idx, prefix, suffix)
* snippet(tbl, col_idx, prefix, suffix, ?, max_tokens)
"""
# FTS5 does not support declared primary keys, but we can use the
# implicit rowid.
rowid = RowIDField()
class Meta:
extension_module = 'fts5'
_error_messages = {
'field_type': ('Besides the implicit `rowid` column, all columns must '
'be instances of SearchField'),
'index': 'Secondary indexes are not supported for FTS5 models',
'pk': 'FTS5 models must use the default `rowid` primary key',
}
@classmethod
def validate_model(cls):
# Perform FTS5-specific validation and options post-processing.
if cls._meta.primary_key.name != 'rowid':
raise ImproperlyConfigured(cls._error_messages['pk'])
for field in cls._meta.fields.values():
if not isinstance(field, (SearchField, RowIDField)):
raise ImproperlyConfigured(cls._error_messages['field_type'])
if cls._meta.indexes:
raise ImproperlyConfigured(cls._error_messages['index'])
@classmethod
def fts5_installed(cls):
if sqlite3.sqlite_version_info[:3] < FTS5_MIN_SQLITE_VERSION:
return False
# Test in-memory DB to determine if the FTS5 extension is installed.
tmp_db = sqlite3.connect(':memory:')
try:
tmp_db.execute('CREATE VIRTUAL TABLE fts5test USING fts5 (data);')
except:
try:
tmp_db.enable_load_extension(True)
tmp_db.load_extension('fts5')
except:
return False
else:
cls._meta.database.load_extension('fts5')
finally:
tmp_db.close()
return True
@staticmethod
def validate_query(query):
"""
Simple helper function to indicate whether a search query is a
valid FTS5 query. Note: this simply looks at the characters being
used, and is not guaranteed to catch all problematic queries.
"""
tokens = _quote_re.findall(query)
for token in tokens:
if token.startswith('"') and token.endswith('"'):
continue
if set(token) & _invalid_ascii:
return False
return True
@staticmethod
def clean_query(query, replace=chr(26)):
"""
Clean a query of invalid tokens.
"""
accum = []
any_invalid = False
tokens = _quote_re.findall(query)
for token in tokens:
if token.startswith('"') and token.endswith('"'):
accum.append(token)
continue
token_set = set(token)
invalid_for_token = token_set & _invalid_ascii
if invalid_for_token:
any_invalid = True
for c in invalid_for_token:
token = token.replace(c, replace)
accum.append(token)
if any_invalid:
return ' '.join(accum)
return query
@classmethod
def match(cls, term):
"""
Generate a `MATCH` expression appropriate for searching this table.
"""
return match(cls._meta.entity, term)
@classmethod
def rank(cls, *args):
return cls.bm25(*args) if args else SQL('rank')
@classmethod
def bm25(cls, *weights):
return fn.bm25(cls._meta.entity, *weights)
@classmethod
def search(cls, term, weights=None, with_score=False, score_alias='score',
explicit_ordering=False):
"""Full-text search using selected `term`."""
return cls.search_bm25(
FTS5Model.clean_query(term),
weights,
with_score,
score_alias,
explicit_ordering)
@classmethod
def search_bm25(cls, term, weights=None, with_score=False,
score_alias='score', explicit_ordering=False):
"""Full-text search using selected `term`."""
if not weights:
rank = SQL('rank')
elif isinstance(weights, dict):
weight_args = []
for field in cls._meta.sorted_fields:
if isinstance(field, SearchField) and not field.unindexed:
weight_args.append(
weights.get(field, weights.get(field.name, 1.0)))
rank = fn.bm25(cls._meta.entity, *weight_args)
else:
rank = fn.bm25(cls._meta.entity, *weights)
selection = ()
order_by = rank
if with_score:
selection = (cls, rank.alias(score_alias))
if with_score and not explicit_ordering:
order_by = SQL(score_alias)
return (cls
.select(*selection)
.where(cls.match(FTS5Model.clean_query(term)))
.order_by(order_by))
@classmethod
def _fts_cmd_sql(cls, cmd, **extra_params):
tbl = cls._meta.entity
columns = [tbl]
values = [cmd]
for key, value in extra_params.items():
columns.append(Entity(key))
values.append(value)
return NodeList((
SQL('INSERT INTO'),
cls._meta.entity,
EnclosedNodeList(columns),
SQL('VALUES'),
EnclosedNodeList(values)))
@classmethod
def _fts_cmd(cls, cmd, **extra_params):
query = cls._fts_cmd_sql(cmd, **extra_params)
return cls._meta.database.execute(query)
@classmethod
def automerge(cls, level):
if not (0 <= level <= 16):
raise ValueError('level must be between 0 and 16')
return cls._fts_cmd('automerge', rank=level)
@classmethod
def merge(cls, npages):
return cls._fts_cmd('merge', rank=npages)
@classmethod
def optimize(cls):
return cls._fts_cmd('optimize')
@classmethod
def rebuild(cls):
return cls._fts_cmd('rebuild')
@classmethod
def set_pgsz(cls, pgsz):
return cls._fts_cmd('pgsz', rank=pgsz)
@classmethod
def set_rank(cls, rank_expression):
return cls._fts_cmd('rank', rank=rank_expression)
@classmethod
def delete_all(cls):
return cls._fts_cmd('delete-all')
@classmethod
def integrity_check(cls, rank=0):
return cls._fts_cmd('integrity-check', rank=rank)
@classmethod
def VocabModel(cls, table_type='row', table=None):
if table_type not in ('row', 'col', 'instance'):
raise ValueError('table_type must be either "row", "col" or '
'"instance".')
attr = '_vocab_model_%s' % table_type
if not hasattr(cls, attr):
class Meta:
database = cls._meta.database
table_name = table or cls._meta.table_name + '_v'
extension_module = fn.fts5vocab(
cls._meta.entity,
SQL(table_type))
attrs = {
'term': VirtualField(TextField),
'doc': IntegerField(),
'cnt': IntegerField(),
'rowid': RowIDField(),
'Meta': Meta,
}
if table_type == 'col':
attrs['col'] = VirtualField(TextField)
elif table_type == 'instance':
attrs['offset'] = VirtualField(IntegerField)
class_name = '%sVocab' % cls.__name__
setattr(cls, attr, type(class_name, (VirtualModel,), attrs))
return getattr(cls, attr)
def ClosureTable(model_class, foreign_key=None, referencing_class=None,
referencing_key=None):
"""Model factory for the transitive closure extension."""
if referencing_class is None:
referencing_class = model_class
if foreign_key is None:
for field_obj in model_class._meta.refs:
if field_obj.rel_model is model_class:
foreign_key = field_obj
break
else:
raise ValueError('Unable to find self-referential foreign key.')
source_key = model_class._meta.primary_key
if referencing_key is None:
referencing_key = source_key
class BaseClosureTable(VirtualModel):
depth = VirtualField(IntegerField)
id = VirtualField(IntegerField)
idcolumn = VirtualField(TextField)
parentcolumn = VirtualField(TextField)
root = VirtualField(IntegerField)
tablename = VirtualField(TextField)
class Meta:
extension_module = 'transitive_closure'
@classmethod
def descendants(cls, node, depth=None, include_node=False):
query = (model_class
.select(model_class, cls.depth.alias('depth'))
.join(cls, on=(source_key == cls.id))
.where(cls.root == node)
.objects())
if depth is not None:
query = query.where(cls.depth == depth)
elif not include_node:
query = query.where(cls.depth > 0)
return query
@classmethod
def ancestors(cls, node, depth=None, include_node=False):
query = (model_class
.select(model_class, cls.depth.alias('depth'))
.join(cls, on=(source_key == cls.root))
.where(cls.id == node)
.objects())
if depth:
query = query.where(cls.depth == depth)
elif not include_node:
query = query.where(cls.depth > 0)
return query
@classmethod
def siblings(cls, node, include_node=False):
if referencing_class is model_class:
# self-join
fk_value = node.__data__.get(foreign_key.name)
query = model_class.select().where(foreign_key == fk_value)
else:
# siblings as given in reference_class
siblings = (referencing_class
.select(referencing_key)
.join(cls, on=(foreign_key == cls.root))
.where((cls.id == node) & (cls.depth == 1)))
# the according models
query = (model_class
.select()
.where(source_key << siblings)
.objects())
if not include_node:
query = query.where(source_key != node)
return query
class Meta:
database = referencing_class._meta.database
options = {
'tablename': referencing_class._meta.table_name,
'idcolumn': referencing_key.column_name,
'parentcolumn': foreign_key.column_name}
primary_key = False
name = '%sClosure' % model_class.__name__
return type(name, (BaseClosureTable,), {'Meta': Meta})
class LSMTable(VirtualModel):
class Meta:
extension_module = 'lsm1'
filename = None
@classmethod
def clean_options(cls, options):
filename = cls._meta.filename
if not filename:
raise ValueError('LSM1 extension requires that you specify a '
'filename for the LSM database.')
else:
if len(filename) >= 2 and filename[0] != '"':
filename = '"%s"' % filename
if not cls._meta.primary_key:
raise ValueError('LSM1 models must specify a primary-key field.')
key = cls._meta.primary_key
if isinstance(key, AutoField):
raise ValueError('LSM1 models must explicitly declare a primary '
'key field.')
if not isinstance(key, (TextField, BlobField, IntegerField)):
raise ValueError('LSM1 key must be a TextField, BlobField, or '
'IntegerField.')
key._hidden = True
if isinstance(key, IntegerField):
data_type = 'UINT'
elif isinstance(key, BlobField):
data_type = 'BLOB'
else:
data_type = 'TEXT'
cls._meta.prefix_arguments = [filename, '"%s"' % key.name, data_type]
# Does the key map to a scalar value, or a tuple of values?
if len(cls._meta.sorted_fields) == 2:
cls._meta._value_field = cls._meta.sorted_fields[1]
else:
cls._meta._value_field = None
return options
@classmethod
def load_extension(cls, path='lsm.so'):
cls._meta.database.load_extension(path)
@staticmethod
def slice_to_expr(key, idx):
if idx.start is not None and idx.stop is not None:
return key.between(idx.start, idx.stop)
elif idx.start is not None:
return key >= idx.start
elif idx.stop is not None:
return key <= idx.stop
@staticmethod
def _apply_lookup_to_query(query, key, lookup):
if isinstance(lookup, slice):
expr = LSMTable.slice_to_expr(key, lookup)
if expr is not None:
query = query.where(expr)
return query, False
elif isinstance(lookup, Expression):
return query.where(lookup), False
else:
return query.where(key == lookup), True
@classmethod
def get_by_id(cls, pk):
query, is_single = cls._apply_lookup_to_query(
cls.select().namedtuples(),
cls._meta.primary_key,
pk)
if is_single:
row = query.get()
return row[1] if cls._meta._value_field is not None else row
else:
return query
@classmethod
def set_by_id(cls, key, value):
if cls._meta._value_field is not None:
data = {cls._meta._value_field: value}
elif isinstance(value, tuple):
data = {}
for field, fval in zip(cls._meta.sorted_fields[1:], value):
data[field] = fval
elif isinstance(value, dict):
data = value
elif isinstance(value, cls):
data = value.__dict__
data[cls._meta.primary_key] = key
cls.replace(data).execute()
@classmethod
def delete_by_id(cls, pk):
query, is_single = cls._apply_lookup_to_query(
cls.delete(),
cls._meta.primary_key,
pk)
return query.execute()
OP.MATCH = 'MATCH'
def _sqlite_regexp(regex, value):
return re.search(regex, value) is not None
class SqliteExtDatabase(SqliteDatabase):
def __init__(self, database, c_extensions=None, rank_functions=True,
hash_functions=False, regexp_function=False,
bloomfilter=False, json_contains=False, *args, **kwargs):
super(SqliteExtDatabase, self).__init__(database, *args, **kwargs)
self._row_factory = None
if c_extensions and not CYTHON_SQLITE_EXTENSIONS:
raise ImproperlyConfigured('SqliteExtDatabase initialized with '
'C extensions, but shared library was '
'not found!')
prefer_c = CYTHON_SQLITE_EXTENSIONS and (c_extensions is not False)
if rank_functions:
if prefer_c:
register_rank_functions(self)
else:
self.register_function(bm25, 'fts_bm25')
self.register_function(rank, 'fts_rank')
self.register_function(bm25, 'fts_bm25f') # Fall back to bm25.
self.register_function(bm25, 'fts_lucene')
if hash_functions:
if not prefer_c:
raise ValueError('C extension required to register hash '
'functions.')
register_hash_functions(self)
if regexp_function:
self.register_function(_sqlite_regexp, 'regexp', 2)
if bloomfilter:
if not prefer_c:
raise ValueError('C extension required to use bloomfilter.')
register_bloomfilter(self)
if json_contains:
self.register_function(_json_contains, 'json_contains')
self._c_extensions = prefer_c
def _add_conn_hooks(self, conn):
super(SqliteExtDatabase, self)._add_conn_hooks(conn)
if self._row_factory:
conn.row_factory = self._row_factory
def row_factory(self, fn):
self._row_factory = fn
if CYTHON_SQLITE_EXTENSIONS:
SQLITE_STATUS_MEMORY_USED = 0
SQLITE_STATUS_PAGECACHE_USED = 1
SQLITE_STATUS_PAGECACHE_OVERFLOW = 2
SQLITE_STATUS_SCRATCH_USED = 3
SQLITE_STATUS_SCRATCH_OVERFLOW = 4
SQLITE_STATUS_MALLOC_SIZE = 5
SQLITE_STATUS_PARSER_STACK = 6
SQLITE_STATUS_PAGECACHE_SIZE = 7
SQLITE_STATUS_SCRATCH_SIZE = 8
SQLITE_STATUS_MALLOC_COUNT = 9
SQLITE_DBSTATUS_LOOKASIDE_USED = 0
SQLITE_DBSTATUS_CACHE_USED = 1
SQLITE_DBSTATUS_SCHEMA_USED = 2
SQLITE_DBSTATUS_STMT_USED = 3
SQLITE_DBSTATUS_LOOKASIDE_HIT = 4
SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE = 5
SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL = 6
SQLITE_DBSTATUS_CACHE_HIT = 7
SQLITE_DBSTATUS_CACHE_MISS = 8
SQLITE_DBSTATUS_CACHE_WRITE = 9
SQLITE_DBSTATUS_DEFERRED_FKS = 10
#SQLITE_DBSTATUS_CACHE_USED_SHARED = 11
def __status__(flag, return_highwater=False):
"""
Expose a sqlite3_status() call for a particular flag as a property of
the Database object.
"""
def getter(self):
result = sqlite_get_status(flag)
return result[1] if return_highwater else result
return property(getter)
def __dbstatus__(flag, return_highwater=False, return_current=False):
"""
Expose a sqlite3_dbstatus() call for a particular flag as a property of
the Database instance. Unlike sqlite3_status(), the dbstatus properties
pertain to the current connection.
"""
def getter(self):
if self._state.conn is None:
raise ImproperlyConfigured('database connection not opened.')
result = sqlite_get_db_status(self._state.conn, flag)
if return_current:
return result[0]
return result[1] if return_highwater else result
return property(getter)
class CSqliteExtDatabase(SqliteExtDatabase):
def __init__(self, *args, **kwargs):
self._conn_helper = None
self._commit_hook = self._rollback_hook = self._update_hook = None
self._replace_busy_handler = False
super(CSqliteExtDatabase, self).__init__(*args, **kwargs)
def init(self, database, replace_busy_handler=False, **kwargs):
super(CSqliteExtDatabase, self).init(database, **kwargs)
self._replace_busy_handler = replace_busy_handler
def _close(self, conn):
if self._commit_hook:
self._conn_helper.set_commit_hook(None)
if self._rollback_hook:
self._conn_helper.set_rollback_hook(None)
if self._update_hook:
self._conn_helper.set_update_hook(None)
return super(CSqliteExtDatabase, self)._close(conn)
def _add_conn_hooks(self, conn):
super(CSqliteExtDatabase, self)._add_conn_hooks(conn)
self._conn_helper = ConnectionHelper(conn)
if self._commit_hook is not None:
self._conn_helper.set_commit_hook(self._commit_hook)
if self._rollback_hook is not None:
self._conn_helper.set_rollback_hook(self._rollback_hook)
if self._update_hook is not None:
self._conn_helper.set_update_hook(self._update_hook)
if self._replace_busy_handler:
timeout = self._timeout or 5
self._conn_helper.set_busy_handler(timeout * 1000)
def on_commit(self, fn):
self._commit_hook = fn
if not self.is_closed():
self._conn_helper.set_commit_hook(fn)
return fn
def on_rollback(self, fn):
self._rollback_hook = fn
if not self.is_closed():
self._conn_helper.set_rollback_hook(fn)
return fn
def on_update(self, fn):
self._update_hook = fn
if not self.is_closed():
self._conn_helper.set_update_hook(fn)
return fn
def changes(self):
return self._conn_helper.changes()
@property
def last_insert_rowid(self):
return self._conn_helper.last_insert_rowid()
@property
def autocommit(self):
return self._conn_helper.autocommit()
def backup(self, destination, pages=None, name=None, progress=None):
return backup(self.connection(), destination.connection(),
pages=pages, name=name, progress=progress)
def backup_to_file(self, filename, pages=None, name=None,
progress=None):
return backup_to_file(self.connection(), filename, pages=pages,
name=name, progress=progress)
def blob_open(self, table, column, rowid, read_only=False):
return Blob(self, table, column, rowid, read_only)
# Status properties.
memory_used = __status__(SQLITE_STATUS_MEMORY_USED)
malloc_size = __status__(SQLITE_STATUS_MALLOC_SIZE, True)
malloc_count = __status__(SQLITE_STATUS_MALLOC_COUNT)
pagecache_used = __status__(SQLITE_STATUS_PAGECACHE_USED)
pagecache_overflow = __status__(SQLITE_STATUS_PAGECACHE_OVERFLOW)
pagecache_size = __status__(SQLITE_STATUS_PAGECACHE_SIZE, True)
scratch_used = __status__(SQLITE_STATUS_SCRATCH_USED)
scratch_overflow = __status__(SQLITE_STATUS_SCRATCH_OVERFLOW)
scratch_size = __status__(SQLITE_STATUS_SCRATCH_SIZE, True)
# Connection status properties.
lookaside_used = __dbstatus__(SQLITE_DBSTATUS_LOOKASIDE_USED)
lookaside_hit = __dbstatus__(SQLITE_DBSTATUS_LOOKASIDE_HIT, True)
lookaside_miss = __dbstatus__(SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE,
True)
lookaside_miss_full = __dbstatus__(SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL,
True)
cache_used = __dbstatus__(SQLITE_DBSTATUS_CACHE_USED, False, True)
#cache_used_shared = __dbstatus__(SQLITE_DBSTATUS_CACHE_USED_SHARED,
# False, True)
schema_used = __dbstatus__(SQLITE_DBSTATUS_SCHEMA_USED, False, True)
statement_used = __dbstatus__(SQLITE_DBSTATUS_STMT_USED, False, True)
cache_hit = __dbstatus__(SQLITE_DBSTATUS_CACHE_HIT, False, True)
cache_miss = __dbstatus__(SQLITE_DBSTATUS_CACHE_MISS, False, True)
cache_write = __dbstatus__(SQLITE_DBSTATUS_CACHE_WRITE, False, True)
def match(lhs, rhs):
return Expression(lhs, OP.MATCH, rhs)
def _parse_match_info(buf):
# See http://sqlite.org/fts3.html#matchinfo
bufsize = len(buf) # Length in bytes.
return [struct.unpack('@I', buf[i:i+4])[0] for i in range(0, bufsize, 4)]
def get_weights(ncol, raw_weights):
if not raw_weights:
return [1] * ncol
else:
weights = [0] * ncol
for i, weight in enumerate(raw_weights):
weights[i] = weight
return weights
# Ranking implementation, which parse matchinfo.
def rank(raw_match_info, *raw_weights):
# Handle match_info called w/default args 'pcx' - based on the example rank
# function http://sqlite.org/fts3.html#appendix_a
match_info = _parse_match_info(raw_match_info)
score = 0.0
p, c = match_info[:2]
weights = get_weights(c, raw_weights)
# matchinfo X value corresponds to, for each phrase in the search query, a
# list of 3 values for each column in the search table.
# So if we have a two-phrase search query and three columns of data, the
# following would be the layout:
# p0 : c0=[0, 1, 2], c1=[3, 4, 5], c2=[6, 7, 8]
# p1 : c0=[9, 10, 11], c1=[12, 13, 14], c2=[15, 16, 17]
for phrase_num in range(p):
phrase_info_idx = 2 + (phrase_num * c * 3)
for col_num in range(c):
weight = weights[col_num]
if not weight:
continue
col_idx = phrase_info_idx + (col_num * 3)
# The idea is that we count the number of times the phrase appears
# in this column of the current row, compared to how many times it
# appears in this column across all rows. The ratio of these values
# provides a rough way to score based on "high value" terms.
row_hits = match_info[col_idx]
all_rows_hits = match_info[col_idx + 1]
if row_hits > 0:
score += weight * (float(row_hits) / all_rows_hits)
return -score
# Okapi BM25 ranking implementation (FTS4 only).
def bm25(raw_match_info, *args):
"""
Usage:
# Format string *must* be pcnalx
# Second parameter to bm25 specifies the index of the column, on
# the table being queries.
bm25(matchinfo(document_tbl, 'pcnalx'), 1) AS rank
"""
match_info = _parse_match_info(raw_match_info)
K = 1.2
B = 0.75
score = 0.0
P_O, C_O, N_O, A_O = range(4) # Offsets into the matchinfo buffer.
term_count = match_info[P_O] # n
col_count = match_info[C_O]
total_docs = match_info[N_O] # N
L_O = A_O + col_count
X_O = L_O + col_count
# Worked example of pcnalx for two columns and two phrases, 100 docs total.
# {
# p = 2
# c = 2
# n = 100
# a0 = 4 -- avg number of tokens for col0, e.g. title
# a1 = 40 -- avg number of tokens for col1, e.g. body
# l0 = 5 -- curr doc has 5 tokens in col0
# l1 = 30 -- curr doc has 30 tokens in col1
#
# x000 -- hits this row for phrase0, col0
# x001 -- hits all rows for phrase0, col0
# x002 -- rows with phrase0 in col0 at least once
#
# x010 -- hits this row for phrase0, col1
# x011 -- hits all rows for phrase0, col1
# x012 -- rows with phrase0 in col1 at least once
#
# x100 -- hits this row for phrase1, col0
# x101 -- hits all rows for phrase1, col0
# x102 -- rows with phrase1 in col0 at least once
#
# x110 -- hits this row for phrase1, col1
# x111 -- hits all rows for phrase1, col1
# x112 -- rows with phrase1 in col1 at least once
# }
weights = get_weights(col_count, args)
for i in range(term_count):
for j in range(col_count):
weight = weights[j]
if weight == 0:
continue
x = X_O + (3 * (j + i * col_count))
term_frequency = float(match_info[x]) # f(qi, D)
docs_with_term = float(match_info[x + 2]) # n(qi)
# log( (N - n(qi) + 0.5) / (n(qi) + 0.5) )
idf = math.log(
(total_docs - docs_with_term + 0.5) /
(docs_with_term + 0.5))
if idf <= 0.0:
idf = 1e-6
doc_length = float(match_info[L_O + j]) # |D|
avg_length = float(match_info[A_O + j]) or 1. # avgdl
ratio = doc_length / avg_length
num = term_frequency * (K + 1.0)
b_part = 1.0 - B + (B * ratio)
denom = term_frequency + (K * b_part)
pc_score = idf * (num / denom)
score += (pc_score * weight)
return -score
def _json_contains(src_json, obj_json):
stack = []
try:
stack.append((json.loads(obj_json), json.loads(src_json)))
except:
# Invalid JSON!
return False
while stack:
obj, src = stack.pop()
if isinstance(src, dict):
if isinstance(obj, dict):
for key in obj:
if key not in src:
return False
stack.append((obj[key], src[key]))
elif isinstance(obj, list):
for item in obj:
if item not in src:
return False
elif obj not in src:
return False
elif isinstance(src, list):
if isinstance(obj, dict):
return False
elif isinstance(obj, list):
try:
for i in range(len(obj)):
stack.append((obj[i], src[i]))
except IndexError:
return False
elif obj not in src:
return False
elif obj != src:
return False
return True