Your IP : 18.217.118.156
import os
import stat
import sys
import typing as t
from datetime import datetime
from gettext import gettext as _
from gettext import ngettext
from ._compat import _get_argv_encoding
from ._compat import open_stream
from .exceptions import BadParameter
from .utils import format_filename
from .utils import LazyFile
from .utils import safecall
if t.TYPE_CHECKING:
import typing_extensions as te
from .core import Context
from .core import Parameter
from .shell_completion import CompletionItem
class ParamType:
"""Represents the type of a parameter. Validates and converts values
from the command line or Python into the correct type.
To implement a custom type, subclass and implement at least the
following:
- The :attr:`name` class attribute must be set.
- Calling an instance of the type with ``None`` must return
``None``. This is already implemented by default.
- :meth:`convert` must convert string values to the correct type.
- :meth:`convert` must accept values that are already the correct
type.
- It must be able to convert a value if the ``ctx`` and ``param``
arguments are ``None``. This can occur when converting prompt
input.
"""
is_composite: t.ClassVar[bool] = False
arity: t.ClassVar[int] = 1
#: the descriptive name of this type
name: str
#: if a list of this type is expected and the value is pulled from a
#: string environment variable, this is what splits it up. `None`
#: means any whitespace. For all parameters the general rule is that
#: whitespace splits them up. The exception are paths and files which
#: are split by ``os.path.pathsep`` by default (":" on Unix and ";" on
#: Windows).
envvar_list_splitter: t.ClassVar[t.Optional[str]] = None
def to_info_dict(self) -> t.Dict[str, t.Any]:
"""Gather information that could be useful for a tool generating
user-facing documentation.
Use :meth:`click.Context.to_info_dict` to traverse the entire
CLI structure.
.. versionadded:: 8.0
"""
# The class name without the "ParamType" suffix.
param_type = type(self).__name__.partition("ParamType")[0]
param_type = param_type.partition("ParameterType")[0]
# Custom subclasses might not remember to set a name.
if hasattr(self, "name"):
name = self.name
else:
name = param_type
return {"param_type": param_type, "name": name}
def __call__(
self,
value: t.Any,
param: t.Optional["Parameter"] = None,
ctx: t.Optional["Context"] = None,
) -> t.Any:
if value is not None:
return self.convert(value, param, ctx)
def get_metavar(self, param: "Parameter") -> t.Optional[str]:
"""Returns the metavar default for this param if it provides one."""
def get_missing_message(self, param: "Parameter") -> t.Optional[str]:
"""Optionally might return extra information about a missing
parameter.
.. versionadded:: 2.0
"""
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
"""Convert the value to the correct type. This is not called if
the value is ``None`` (the missing value).
This must accept string values from the command line, as well as
values that are already the correct type. It may also convert
other compatible types.
The ``param`` and ``ctx`` arguments may be ``None`` in certain
situations, such as when converting prompt input.
If the value cannot be converted, call :meth:`fail` with a
descriptive message.
:param value: The value to convert.
:param param: The parameter that is using this type to convert
its value. May be ``None``.
:param ctx: The current context that arrived at this value. May
be ``None``.
"""
return value
def split_envvar_value(self, rv: str) -> t.Sequence[str]:
"""Given a value from an environment variable this splits it up
into small chunks depending on the defined envvar list splitter.
If the splitter is set to `None`, which means that whitespace splits,
then leading and trailing whitespace is ignored. Otherwise, leading
and trailing splitters usually lead to empty items being included.
"""
return (rv or "").split(self.envvar_list_splitter)
def fail(
self,
message: str,
param: t.Optional["Parameter"] = None,
ctx: t.Optional["Context"] = None,
) -> "t.NoReturn":
"""Helper method to fail with an invalid value message."""
raise BadParameter(message, ctx=ctx, param=param)
def shell_complete(
self, ctx: "Context", param: "Parameter", incomplete: str
) -> t.List["CompletionItem"]:
"""Return a list of
:class:`~click.shell_completion.CompletionItem` objects for the
incomplete value. Most types do not provide completions, but
some do, and this allows custom types to provide custom
completions as well.
:param ctx: Invocation context for this command.
:param param: The parameter that is requesting completion.
:param incomplete: Value being completed. May be empty.
.. versionadded:: 8.0
"""
return []
class CompositeParamType(ParamType):
is_composite = True
@property
def arity(self) -> int: # type: ignore
raise NotImplementedError()
class FuncParamType(ParamType):
def __init__(self, func: t.Callable[[t.Any], t.Any]) -> None:
self.name: str = func.__name__
self.func = func
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict["func"] = self.func
return info_dict
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
try:
return self.func(value)
except ValueError:
try:
value = str(value)
except UnicodeError:
value = value.decode("utf-8", "replace")
self.fail(value, param, ctx)
class UnprocessedParamType(ParamType):
name = "text"
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
return value
def __repr__(self) -> str:
return "UNPROCESSED"
class StringParamType(ParamType):
name = "text"
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
if isinstance(value, bytes):
enc = _get_argv_encoding()
try:
value = value.decode(enc)
except UnicodeError:
fs_enc = sys.getfilesystemencoding()
if fs_enc != enc:
try:
value = value.decode(fs_enc)
except UnicodeError:
value = value.decode("utf-8", "replace")
else:
value = value.decode("utf-8", "replace")
return value
return str(value)
def __repr__(self) -> str:
return "STRING"
class Choice(ParamType):
"""The choice type allows a value to be checked against a fixed set
of supported values. All of these values have to be strings.
You should only pass a list or tuple of choices. Other iterables
(like generators) may lead to surprising results.
The resulting value will always be one of the originally passed choices
regardless of ``case_sensitive`` or any ``ctx.token_normalize_func``
being specified.
See :ref:`choice-opts` for an example.
:param case_sensitive: Set to false to make choices case
insensitive. Defaults to true.
"""
name = "choice"
def __init__(self, choices: t.Sequence[str], case_sensitive: bool = True) -> None:
self.choices = choices
self.case_sensitive = case_sensitive
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict["choices"] = self.choices
info_dict["case_sensitive"] = self.case_sensitive
return info_dict
def get_metavar(self, param: "Parameter") -> str:
choices_str = "|".join(self.choices)
# Use curly braces to indicate a required argument.
if param.required and param.param_type_name == "argument":
return f"{{{choices_str}}}"
# Use square braces to indicate an option or optional argument.
return f"[{choices_str}]"
def get_missing_message(self, param: "Parameter") -> str:
return _("Choose from:\n\t{choices}").format(choices=",\n\t".join(self.choices))
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
# Match through normalization and case sensitivity
# first do token_normalize_func, then lowercase
# preserve original `value` to produce an accurate message in
# `self.fail`
normed_value = value
normed_choices = {choice: choice for choice in self.choices}
if ctx is not None and ctx.token_normalize_func is not None:
normed_value = ctx.token_normalize_func(value)
normed_choices = {
ctx.token_normalize_func(normed_choice): original
for normed_choice, original in normed_choices.items()
}
if not self.case_sensitive:
normed_value = normed_value.casefold()
normed_choices = {
normed_choice.casefold(): original
for normed_choice, original in normed_choices.items()
}
if normed_value in normed_choices:
return normed_choices[normed_value]
choices_str = ", ".join(map(repr, self.choices))
self.fail(
ngettext(
"{value!r} is not {choice}.",
"{value!r} is not one of {choices}.",
len(self.choices),
).format(value=value, choice=choices_str, choices=choices_str),
param,
ctx,
)
def __repr__(self) -> str:
return f"Choice({list(self.choices)})"
def shell_complete(
self, ctx: "Context", param: "Parameter", incomplete: str
) -> t.List["CompletionItem"]:
"""Complete choices that start with the incomplete value.
:param ctx: Invocation context for this command.
:param param: The parameter that is requesting completion.
:param incomplete: Value being completed. May be empty.
.. versionadded:: 8.0
"""
from click.shell_completion import CompletionItem
str_choices = map(str, self.choices)
if self.case_sensitive:
matched = (c for c in str_choices if c.startswith(incomplete))
else:
incomplete = incomplete.lower()
matched = (c for c in str_choices if c.lower().startswith(incomplete))
return [CompletionItem(c) for c in matched]
class DateTime(ParamType):
"""The DateTime type converts date strings into `datetime` objects.
The format strings which are checked are configurable, but default to some
common (non-timezone aware) ISO 8601 formats.
When specifying *DateTime* formats, you should only pass a list or a tuple.
Other iterables, like generators, may lead to surprising results.
The format strings are processed using ``datetime.strptime``, and this
consequently defines the format strings which are allowed.
Parsing is tried using each format, in order, and the first format which
parses successfully is used.
:param formats: A list or tuple of date format strings, in the order in
which they should be tried. Defaults to
``'%Y-%m-%d'``, ``'%Y-%m-%dT%H:%M:%S'``,
``'%Y-%m-%d %H:%M:%S'``.
"""
name = "datetime"
def __init__(self, formats: t.Optional[t.Sequence[str]] = None):
self.formats: t.Sequence[str] = formats or [
"%Y-%m-%d",
"%Y-%m-%dT%H:%M:%S",
"%Y-%m-%d %H:%M:%S",
]
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict["formats"] = self.formats
return info_dict
def get_metavar(self, param: "Parameter") -> str:
return f"[{'|'.join(self.formats)}]"
def _try_to_convert_date(self, value: t.Any, format: str) -> t.Optional[datetime]:
try:
return datetime.strptime(value, format)
except ValueError:
return None
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
if isinstance(value, datetime):
return value
for format in self.formats:
converted = self._try_to_convert_date(value, format)
if converted is not None:
return converted
formats_str = ", ".join(map(repr, self.formats))
self.fail(
ngettext(
"{value!r} does not match the format {format}.",
"{value!r} does not match the formats {formats}.",
len(self.formats),
).format(value=value, format=formats_str, formats=formats_str),
param,
ctx,
)
def __repr__(self) -> str:
return "DateTime"
class _NumberParamTypeBase(ParamType):
_number_class: t.ClassVar[t.Type[t.Any]]
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
try:
return self._number_class(value)
except ValueError:
self.fail(
_("{value!r} is not a valid {number_type}.").format(
value=value, number_type=self.name
),
param,
ctx,
)
class _NumberRangeBase(_NumberParamTypeBase):
def __init__(
self,
min: t.Optional[float] = None,
max: t.Optional[float] = None,
min_open: bool = False,
max_open: bool = False,
clamp: bool = False,
) -> None:
self.min = min
self.max = max
self.min_open = min_open
self.max_open = max_open
self.clamp = clamp
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict.update(
min=self.min,
max=self.max,
min_open=self.min_open,
max_open=self.max_open,
clamp=self.clamp,
)
return info_dict
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
import operator
rv = super().convert(value, param, ctx)
lt_min: bool = self.min is not None and (
operator.le if self.min_open else operator.lt
)(rv, self.min)
gt_max: bool = self.max is not None and (
operator.ge if self.max_open else operator.gt
)(rv, self.max)
if self.clamp:
if lt_min:
return self._clamp(self.min, 1, self.min_open) # type: ignore
if gt_max:
return self._clamp(self.max, -1, self.max_open) # type: ignore
if lt_min or gt_max:
self.fail(
_("{value} is not in the range {range}.").format(
value=rv, range=self._describe_range()
),
param,
ctx,
)
return rv
def _clamp(self, bound: float, dir: "te.Literal[1, -1]", open: bool) -> float:
"""Find the valid value to clamp to bound in the given
direction.
:param bound: The boundary value.
:param dir: 1 or -1 indicating the direction to move.
:param open: If true, the range does not include the bound.
"""
raise NotImplementedError
def _describe_range(self) -> str:
"""Describe the range for use in help text."""
if self.min is None:
op = "<" if self.max_open else "<="
return f"x{op}{self.max}"
if self.max is None:
op = ">" if self.min_open else ">="
return f"x{op}{self.min}"
lop = "<" if self.min_open else "<="
rop = "<" if self.max_open else "<="
return f"{self.min}{lop}x{rop}{self.max}"
def __repr__(self) -> str:
clamp = " clamped" if self.clamp else ""
return f"<{type(self).__name__} {self._describe_range()}{clamp}>"
class IntParamType(_NumberParamTypeBase):
name = "integer"
_number_class = int
def __repr__(self) -> str:
return "INT"
class IntRange(_NumberRangeBase, IntParamType):
"""Restrict an :data:`click.INT` value to a range of accepted
values. See :ref:`ranges`.
If ``min`` or ``max`` are not passed, any value is accepted in that
direction. If ``min_open`` or ``max_open`` are enabled, the
corresponding boundary is not included in the range.
If ``clamp`` is enabled, a value outside the range is clamped to the
boundary instead of failing.
.. versionchanged:: 8.0
Added the ``min_open`` and ``max_open`` parameters.
"""
name = "integer range"
def _clamp( # type: ignore
self, bound: int, dir: "te.Literal[1, -1]", open: bool
) -> int:
if not open:
return bound
return bound + dir
class FloatParamType(_NumberParamTypeBase):
name = "float"
_number_class = float
def __repr__(self) -> str:
return "FLOAT"
class FloatRange(_NumberRangeBase, FloatParamType):
"""Restrict a :data:`click.FLOAT` value to a range of accepted
values. See :ref:`ranges`.
If ``min`` or ``max`` are not passed, any value is accepted in that
direction. If ``min_open`` or ``max_open`` are enabled, the
corresponding boundary is not included in the range.
If ``clamp`` is enabled, a value outside the range is clamped to the
boundary instead of failing. This is not supported if either
boundary is marked ``open``.
.. versionchanged:: 8.0
Added the ``min_open`` and ``max_open`` parameters.
"""
name = "float range"
def __init__(
self,
min: t.Optional[float] = None,
max: t.Optional[float] = None,
min_open: bool = False,
max_open: bool = False,
clamp: bool = False,
) -> None:
super().__init__(
min=min, max=max, min_open=min_open, max_open=max_open, clamp=clamp
)
if (min_open or max_open) and clamp:
raise TypeError("Clamping is not supported for open bounds.")
def _clamp(self, bound: float, dir: "te.Literal[1, -1]", open: bool) -> float:
if not open:
return bound
# Could use Python 3.9's math.nextafter here, but clamping an
# open float range doesn't seem to be particularly useful. It's
# left up to the user to write a callback to do it if needed.
raise RuntimeError("Clamping is not supported for open bounds.")
class BoolParamType(ParamType):
name = "boolean"
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
if value in {False, True}:
return bool(value)
norm = value.strip().lower()
if norm in {"1", "true", "t", "yes", "y", "on"}:
return True
if norm in {"0", "false", "f", "no", "n", "off"}:
return False
self.fail(
_("{value!r} is not a valid boolean.").format(value=value), param, ctx
)
def __repr__(self) -> str:
return "BOOL"
class UUIDParameterType(ParamType):
name = "uuid"
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
import uuid
if isinstance(value, uuid.UUID):
return value
value = value.strip()
try:
return uuid.UUID(value)
except ValueError:
self.fail(
_("{value!r} is not a valid UUID.").format(value=value), param, ctx
)
def __repr__(self) -> str:
return "UUID"
class File(ParamType):
"""Declares a parameter to be a file for reading or writing. The file
is automatically closed once the context tears down (after the command
finished working).
Files can be opened for reading or writing. The special value ``-``
indicates stdin or stdout depending on the mode.
By default, the file is opened for reading text data, but it can also be
opened in binary mode or for writing. The encoding parameter can be used
to force a specific encoding.
The `lazy` flag controls if the file should be opened immediately or upon
first IO. The default is to be non-lazy for standard input and output
streams as well as files opened for reading, `lazy` otherwise. When opening a
file lazily for reading, it is still opened temporarily for validation, but
will not be held open until first IO. lazy is mainly useful when opening
for writing to avoid creating the file until it is needed.
Starting with Click 2.0, files can also be opened atomically in which
case all writes go into a separate file in the same folder and upon
completion the file will be moved over to the original location. This
is useful if a file regularly read by other users is modified.
See :ref:`file-args` for more information.
"""
name = "filename"
envvar_list_splitter: t.ClassVar[str] = os.path.pathsep
def __init__(
self,
mode: str = "r",
encoding: t.Optional[str] = None,
errors: t.Optional[str] = "strict",
lazy: t.Optional[bool] = None,
atomic: bool = False,
) -> None:
self.mode = mode
self.encoding = encoding
self.errors = errors
self.lazy = lazy
self.atomic = atomic
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict.update(mode=self.mode, encoding=self.encoding)
return info_dict
def resolve_lazy_flag(self, value: "t.Union[str, os.PathLike[str]]") -> bool:
if self.lazy is not None:
return self.lazy
if os.fspath(value) == "-":
return False
elif "w" in self.mode:
return True
return False
def convert(
self,
value: t.Union[str, "os.PathLike[str]", t.IO[t.Any]],
param: t.Optional["Parameter"],
ctx: t.Optional["Context"],
) -> t.IO[t.Any]:
if _is_file_like(value):
return value
value = t.cast("t.Union[str, os.PathLike[str]]", value)
try:
lazy = self.resolve_lazy_flag(value)
if lazy:
lf = LazyFile(
value, self.mode, self.encoding, self.errors, atomic=self.atomic
)
if ctx is not None:
ctx.call_on_close(lf.close_intelligently)
return t.cast(t.IO[t.Any], lf)
f, should_close = open_stream(
value, self.mode, self.encoding, self.errors, atomic=self.atomic
)
# If a context is provided, we automatically close the file
# at the end of the context execution (or flush out). If a
# context does not exist, it's the caller's responsibility to
# properly close the file. This for instance happens when the
# type is used with prompts.
if ctx is not None:
if should_close:
ctx.call_on_close(safecall(f.close))
else:
ctx.call_on_close(safecall(f.flush))
return f
except OSError as e: # noqa: B014
self.fail(f"'{format_filename(value)}': {e.strerror}", param, ctx)
def shell_complete(
self, ctx: "Context", param: "Parameter", incomplete: str
) -> t.List["CompletionItem"]:
"""Return a special completion marker that tells the completion
system to use the shell to provide file path completions.
:param ctx: Invocation context for this command.
:param param: The parameter that is requesting completion.
:param incomplete: Value being completed. May be empty.
.. versionadded:: 8.0
"""
from click.shell_completion import CompletionItem
return [CompletionItem(incomplete, type="file")]
def _is_file_like(value: t.Any) -> "te.TypeGuard[t.IO[t.Any]]":
return hasattr(value, "read") or hasattr(value, "write")
class Path(ParamType):
"""The ``Path`` type is similar to the :class:`File` type, but
returns the filename instead of an open file. Various checks can be
enabled to validate the type of file and permissions.
:param exists: The file or directory needs to exist for the value to
be valid. If this is not set to ``True``, and the file does not
exist, then all further checks are silently skipped.
:param file_okay: Allow a file as a value.
:param dir_okay: Allow a directory as a value.
:param readable: if true, a readable check is performed.
:param writable: if true, a writable check is performed.
:param executable: if true, an executable check is performed.
:param resolve_path: Make the value absolute and resolve any
symlinks. A ``~`` is not expanded, as this is supposed to be
done by the shell only.
:param allow_dash: Allow a single dash as a value, which indicates
a standard stream (but does not open it). Use
:func:`~click.open_file` to handle opening this value.
:param path_type: Convert the incoming path value to this type. If
``None``, keep Python's default, which is ``str``. Useful to
convert to :class:`pathlib.Path`.
.. versionchanged:: 8.1
Added the ``executable`` parameter.
.. versionchanged:: 8.0
Allow passing ``path_type=pathlib.Path``.
.. versionchanged:: 6.0
Added the ``allow_dash`` parameter.
"""
envvar_list_splitter: t.ClassVar[str] = os.path.pathsep
def __init__(
self,
exists: bool = False,
file_okay: bool = True,
dir_okay: bool = True,
writable: bool = False,
readable: bool = True,
resolve_path: bool = False,
allow_dash: bool = False,
path_type: t.Optional[t.Type[t.Any]] = None,
executable: bool = False,
):
self.exists = exists
self.file_okay = file_okay
self.dir_okay = dir_okay
self.readable = readable
self.writable = writable
self.executable = executable
self.resolve_path = resolve_path
self.allow_dash = allow_dash
self.type = path_type
if self.file_okay and not self.dir_okay:
self.name: str = _("file")
elif self.dir_okay and not self.file_okay:
self.name = _("directory")
else:
self.name = _("path")
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict.update(
exists=self.exists,
file_okay=self.file_okay,
dir_okay=self.dir_okay,
writable=self.writable,
readable=self.readable,
allow_dash=self.allow_dash,
)
return info_dict
def coerce_path_result(
self, value: "t.Union[str, os.PathLike[str]]"
) -> "t.Union[str, bytes, os.PathLike[str]]":
if self.type is not None and not isinstance(value, self.type):
if self.type is str:
return os.fsdecode(value)
elif self.type is bytes:
return os.fsencode(value)
else:
return t.cast("os.PathLike[str]", self.type(value))
return value
def convert(
self,
value: "t.Union[str, os.PathLike[str]]",
param: t.Optional["Parameter"],
ctx: t.Optional["Context"],
) -> "t.Union[str, bytes, os.PathLike[str]]":
rv = value
is_dash = self.file_okay and self.allow_dash and rv in (b"-", "-")
if not is_dash:
if self.resolve_path:
# os.path.realpath doesn't resolve symlinks on Windows
# until Python 3.8. Use pathlib for now.
import pathlib
rv = os.fsdecode(pathlib.Path(rv).resolve())
try:
st = os.stat(rv)
except OSError:
if not self.exists:
return self.coerce_path_result(rv)
self.fail(
_("{name} {filename!r} does not exist.").format(
name=self.name.title(), filename=format_filename(value)
),
param,
ctx,
)
if not self.file_okay and stat.S_ISREG(st.st_mode):
self.fail(
_("{name} {filename!r} is a file.").format(
name=self.name.title(), filename=format_filename(value)
),
param,
ctx,
)
if not self.dir_okay and stat.S_ISDIR(st.st_mode):
self.fail(
_("{name} '{filename}' is a directory.").format(
name=self.name.title(), filename=format_filename(value)
),
param,
ctx,
)
if self.readable and not os.access(rv, os.R_OK):
self.fail(
_("{name} {filename!r} is not readable.").format(
name=self.name.title(), filename=format_filename(value)
),
param,
ctx,
)
if self.writable and not os.access(rv, os.W_OK):
self.fail(
_("{name} {filename!r} is not writable.").format(
name=self.name.title(), filename=format_filename(value)
),
param,
ctx,
)
if self.executable and not os.access(value, os.X_OK):
self.fail(
_("{name} {filename!r} is not executable.").format(
name=self.name.title(), filename=format_filename(value)
),
param,
ctx,
)
return self.coerce_path_result(rv)
def shell_complete(
self, ctx: "Context", param: "Parameter", incomplete: str
) -> t.List["CompletionItem"]:
"""Return a special completion marker that tells the completion
system to use the shell to provide path completions for only
directories or any paths.
:param ctx: Invocation context for this command.
:param param: The parameter that is requesting completion.
:param incomplete: Value being completed. May be empty.
.. versionadded:: 8.0
"""
from click.shell_completion import CompletionItem
type = "dir" if self.dir_okay and not self.file_okay else "file"
return [CompletionItem(incomplete, type=type)]
class Tuple(CompositeParamType):
"""The default behavior of Click is to apply a type on a value directly.
This works well in most cases, except for when `nargs` is set to a fixed
count and different types should be used for different items. In this
case the :class:`Tuple` type can be used. This type can only be used
if `nargs` is set to a fixed number.
For more information see :ref:`tuple-type`.
This can be selected by using a Python tuple literal as a type.
:param types: a list of types that should be used for the tuple items.
"""
def __init__(self, types: t.Sequence[t.Union[t.Type[t.Any], ParamType]]) -> None:
self.types: t.Sequence[ParamType] = [convert_type(ty) for ty in types]
def to_info_dict(self) -> t.Dict[str, t.Any]:
info_dict = super().to_info_dict()
info_dict["types"] = [t.to_info_dict() for t in self.types]
return info_dict
@property
def name(self) -> str: # type: ignore
return f"<{' '.join(ty.name for ty in self.types)}>"
@property
def arity(self) -> int: # type: ignore
return len(self.types)
def convert(
self, value: t.Any, param: t.Optional["Parameter"], ctx: t.Optional["Context"]
) -> t.Any:
len_type = len(self.types)
len_value = len(value)
if len_value != len_type:
self.fail(
ngettext(
"{len_type} values are required, but {len_value} was given.",
"{len_type} values are required, but {len_value} were given.",
len_value,
).format(len_type=len_type, len_value=len_value),
param=param,
ctx=ctx,
)
return tuple(ty(x, param, ctx) for ty, x in zip(self.types, value))
def convert_type(ty: t.Optional[t.Any], default: t.Optional[t.Any] = None) -> ParamType:
"""Find the most appropriate :class:`ParamType` for the given Python
type. If the type isn't provided, it can be inferred from a default
value.
"""
guessed_type = False
if ty is None and default is not None:
if isinstance(default, (tuple, list)):
# If the default is empty, ty will remain None and will
# return STRING.
if default:
item = default[0]
# A tuple of tuples needs to detect the inner types.
# Can't call convert recursively because that would
# incorrectly unwind the tuple to a single type.
if isinstance(item, (tuple, list)):
ty = tuple(map(type, item))
else:
ty = type(item)
else:
ty = type(default)
guessed_type = True
if isinstance(ty, tuple):
return Tuple(ty)
if isinstance(ty, ParamType):
return ty
if ty is str or ty is None:
return STRING
if ty is int:
return INT
if ty is float:
return FLOAT
if ty is bool:
return BOOL
if guessed_type:
return STRING
if __debug__:
try:
if issubclass(ty, ParamType):
raise AssertionError(
f"Attempted to use an uninstantiated parameter type ({ty})."
)
except TypeError:
# ty is an instance (correct), so issubclass fails.
pass
return FuncParamType(ty)
#: A dummy parameter type that just does nothing. From a user's
#: perspective this appears to just be the same as `STRING` but
#: internally no string conversion takes place if the input was bytes.
#: This is usually useful when working with file paths as they can
#: appear in bytes and unicode.
#:
#: For path related uses the :class:`Path` type is a better choice but
#: there are situations where an unprocessed type is useful which is why
#: it is is provided.
#:
#: .. versionadded:: 4.0
UNPROCESSED = UnprocessedParamType()
#: A unicode string parameter type which is the implicit default. This
#: can also be selected by using ``str`` as type.
STRING = StringParamType()
#: An integer parameter. This can also be selected by using ``int`` as
#: type.
INT = IntParamType()
#: A floating point value parameter. This can also be selected by using
#: ``float`` as type.
FLOAT = FloatParamType()
#: A boolean parameter. This is the default for boolean flags. This can
#: also be selected by using ``bool`` as a type.
BOOL = BoolParamType()
#: A UUID parameter.
UUID = UUIDParameterType()