Your IP : 3.138.102.163
# ### this file stubs are generated by tools/write_pyi.py - do not edit ###
# ### imports are manually managed
from __future__ import annotations
from typing import Any
from typing import Callable
from typing import Collection
from typing import ContextManager
from typing import Dict
from typing import Iterable
from typing import List
from typing import Literal
from typing import Mapping
from typing import MutableMapping
from typing import Optional
from typing import overload
from typing import Sequence
from typing import TextIO
from typing import Tuple
from typing import TYPE_CHECKING
from typing import Union
if TYPE_CHECKING:
from sqlalchemy.engine.base import Connection
from sqlalchemy.engine.url import URL
from sqlalchemy.sql import Executable
from sqlalchemy.sql.schema import Column
from sqlalchemy.sql.schema import FetchedValue
from sqlalchemy.sql.schema import MetaData
from sqlalchemy.sql.schema import SchemaItem
from sqlalchemy.sql.type_api import TypeEngine
from .autogenerate.api import AutogenContext
from .config import Config
from .operations.ops import MigrationScript
from .runtime.migration import _ProxyTransaction
from .runtime.migration import MigrationContext
from .runtime.migration import MigrationInfo
from .script import ScriptDirectory
### end imports ###
def begin_transaction() -> Union[_ProxyTransaction, ContextManager[None]]:
"""Return a context manager that will
enclose an operation within a "transaction",
as defined by the environment's offline
and transactional DDL settings.
e.g.::
with context.begin_transaction():
context.run_migrations()
:meth:`.begin_transaction` is intended to
"do the right thing" regardless of
calling context:
* If :meth:`.is_transactional_ddl` is ``False``,
returns a "do nothing" context manager
which otherwise produces no transactional
state or directives.
* If :meth:`.is_offline_mode` is ``True``,
returns a context manager that will
invoke the :meth:`.DefaultImpl.emit_begin`
and :meth:`.DefaultImpl.emit_commit`
methods, which will produce the string
directives ``BEGIN`` and ``COMMIT`` on
the output stream, as rendered by the
target backend (e.g. SQL Server would
emit ``BEGIN TRANSACTION``).
* Otherwise, calls :meth:`sqlalchemy.engine.Connection.begin`
on the current online connection, which
returns a :class:`sqlalchemy.engine.Transaction`
object. This object demarcates a real
transaction and is itself a context manager,
which will roll back if an exception
is raised.
Note that a custom ``env.py`` script which
has more specific transactional needs can of course
manipulate the :class:`~sqlalchemy.engine.Connection`
directly to produce transactional state in "online"
mode.
"""
config: Config
def configure(
connection: Optional[Connection] = None,
url: Union[str, URL, None] = None,
dialect_name: Optional[str] = None,
dialect_opts: Optional[Dict[str, Any]] = None,
transactional_ddl: Optional[bool] = None,
transaction_per_migration: bool = False,
output_buffer: Optional[TextIO] = None,
starting_rev: Optional[str] = None,
tag: Optional[str] = None,
template_args: Optional[Dict[str, Any]] = None,
render_as_batch: bool = False,
target_metadata: Union[MetaData, Sequence[MetaData], None] = None,
include_name: Optional[
Callable[
[
Optional[str],
Literal[
"schema",
"table",
"column",
"index",
"unique_constraint",
"foreign_key_constraint",
],
MutableMapping[
Literal[
"schema_name",
"table_name",
"schema_qualified_table_name",
],
Optional[str],
],
],
bool,
]
] = None,
include_object: Optional[
Callable[
[
SchemaItem,
Optional[str],
Literal[
"schema",
"table",
"column",
"index",
"unique_constraint",
"foreign_key_constraint",
],
bool,
Optional[SchemaItem],
],
bool,
]
] = None,
include_schemas: bool = False,
process_revision_directives: Optional[
Callable[
[
MigrationContext,
Union[str, Iterable[Optional[str]], Iterable[str]],
List[MigrationScript],
],
None,
]
] = None,
compare_type: Union[
bool,
Callable[
[
MigrationContext,
Column[Any],
Column[Any],
TypeEngine[Any],
TypeEngine[Any],
],
Optional[bool],
],
] = True,
compare_server_default: Union[
bool,
Callable[
[
MigrationContext,
Column[Any],
Column[Any],
Optional[str],
Optional[FetchedValue],
Optional[str],
],
Optional[bool],
],
] = False,
render_item: Optional[
Callable[[str, Any, AutogenContext], Union[str, Literal[False]]]
] = None,
literal_binds: bool = False,
upgrade_token: str = "upgrades",
downgrade_token: str = "downgrades",
alembic_module_prefix: str = "op.",
sqlalchemy_module_prefix: str = "sa.",
user_module_prefix: Optional[str] = None,
on_version_apply: Optional[
Callable[
[
MigrationContext,
MigrationInfo,
Collection[Any],
Mapping[str, Any],
],
None,
]
] = None,
**kw: Any,
) -> None:
"""Configure a :class:`.MigrationContext` within this
:class:`.EnvironmentContext` which will provide database
connectivity and other configuration to a series of
migration scripts.
Many methods on :class:`.EnvironmentContext` require that
this method has been called in order to function, as they
ultimately need to have database access or at least access
to the dialect in use. Those which do are documented as such.
The important thing needed by :meth:`.configure` is a
means to determine what kind of database dialect is in use.
An actual connection to that database is needed only if
the :class:`.MigrationContext` is to be used in
"online" mode.
If the :meth:`.is_offline_mode` function returns ``True``,
then no connection is needed here. Otherwise, the
``connection`` parameter should be present as an
instance of :class:`sqlalchemy.engine.Connection`.
This function is typically called from the ``env.py``
script within a migration environment. It can be called
multiple times for an invocation. The most recent
:class:`~sqlalchemy.engine.Connection`
for which it was called is the one that will be operated upon
by the next call to :meth:`.run_migrations`.
General parameters:
:param connection: a :class:`~sqlalchemy.engine.Connection`
to use
for SQL execution in "online" mode. When present, is also
used to determine the type of dialect in use.
:param url: a string database url, or a
:class:`sqlalchemy.engine.url.URL` object.
The type of dialect to be used will be derived from this if
``connection`` is not passed.
:param dialect_name: string name of a dialect, such as
"postgresql", "mssql", etc.
The type of dialect to be used will be derived from this if
``connection`` and ``url`` are not passed.
:param dialect_opts: dictionary of options to be passed to dialect
constructor.
:param transactional_ddl: Force the usage of "transactional"
DDL on or off;
this otherwise defaults to whether or not the dialect in
use supports it.
:param transaction_per_migration: if True, nest each migration script
in a transaction rather than the full series of migrations to
run.
:param output_buffer: a file-like object that will be used
for textual output
when the ``--sql`` option is used to generate SQL scripts.
Defaults to
``sys.stdout`` if not passed here and also not present on
the :class:`.Config`
object. The value here overrides that of the :class:`.Config`
object.
:param output_encoding: when using ``--sql`` to generate SQL
scripts, apply this encoding to the string output.
:param literal_binds: when using ``--sql`` to generate SQL
scripts, pass through the ``literal_binds`` flag to the compiler
so that any literal values that would ordinarily be bound
parameters are converted to plain strings.
.. warning:: Dialects can typically only handle simple datatypes
like strings and numbers for auto-literal generation. Datatypes
like dates, intervals, and others may still require manual
formatting, typically using :meth:`.Operations.inline_literal`.
.. note:: the ``literal_binds`` flag is ignored on SQLAlchemy
versions prior to 0.8 where this feature is not supported.
.. seealso::
:meth:`.Operations.inline_literal`
:param starting_rev: Override the "starting revision" argument
when using ``--sql`` mode.
:param tag: a string tag for usage by custom ``env.py`` scripts.
Set via the ``--tag`` option, can be overridden here.
:param template_args: dictionary of template arguments which
will be added to the template argument environment when
running the "revision" command. Note that the script environment
is only run within the "revision" command if the --autogenerate
option is used, or if the option "revision_environment=true"
is present in the alembic.ini file.
:param version_table: The name of the Alembic version table.
The default is ``'alembic_version'``.
:param version_table_schema: Optional schema to place version
table within.
:param version_table_pk: boolean, whether the Alembic version table
should use a primary key constraint for the "value" column; this
only takes effect when the table is first created.
Defaults to True; setting to False should not be necessary and is
here for backwards compatibility reasons.
:param on_version_apply: a callable or collection of callables to be
run for each migration step.
The callables will be run in the order they are given, once for
each migration step, after the respective operation has been
applied but before its transaction is finalized.
Each callable accepts no positional arguments and the following
keyword arguments:
* ``ctx``: the :class:`.MigrationContext` running the migration,
* ``step``: a :class:`.MigrationInfo` representing the
step currently being applied,
* ``heads``: a collection of version strings representing the
current heads,
* ``run_args``: the ``**kwargs`` passed to :meth:`.run_migrations`.
Parameters specific to the autogenerate feature, when
``alembic revision`` is run with the ``--autogenerate`` feature:
:param target_metadata: a :class:`sqlalchemy.schema.MetaData`
object, or a sequence of :class:`~sqlalchemy.schema.MetaData`
objects, that will be consulted during autogeneration.
The tables present in each :class:`~sqlalchemy.schema.MetaData`
will be compared against
what is locally available on the target
:class:`~sqlalchemy.engine.Connection`
to produce candidate upgrade/downgrade operations.
:param compare_type: Indicates type comparison behavior during
an autogenerate
operation. Defaults to ``True`` turning on type comparison, which
has good accuracy on most backends. See :ref:`compare_types`
for an example as well as information on other type
comparison options. Set to ``False`` which disables type
comparison. A callable can also be passed to provide custom type
comparison, see :ref:`compare_types` for additional details.
.. versionchanged:: 1.12.0 The default value of
:paramref:`.EnvironmentContext.configure.compare_type` has been
changed to ``True``.
.. seealso::
:ref:`compare_types`
:paramref:`.EnvironmentContext.configure.compare_server_default`
:param compare_server_default: Indicates server default comparison
behavior during
an autogenerate operation. Defaults to ``False`` which disables
server default
comparison. Set to ``True`` to turn on server default comparison,
which has
varied accuracy depending on backend.
To customize server default comparison behavior, a callable may
be specified
which can filter server default comparisons during an
autogenerate operation.
defaults during an autogenerate operation. The format of this
callable is::
def my_compare_server_default(context, inspected_column,
metadata_column, inspected_default, metadata_default,
rendered_metadata_default):
# return True if the defaults are different,
# False if not, or None to allow the default implementation
# to compare these defaults
return None
context.configure(
# ...
compare_server_default = my_compare_server_default
)
``inspected_column`` is a dictionary structure as returned by
:meth:`sqlalchemy.engine.reflection.Inspector.get_columns`, whereas
``metadata_column`` is a :class:`sqlalchemy.schema.Column` from
the local model environment.
A return value of ``None`` indicates to allow default server default
comparison
to proceed. Note that some backends such as Postgresql actually
execute
the two defaults on the database side to compare for equivalence.
.. seealso::
:paramref:`.EnvironmentContext.configure.compare_type`
:param include_name: A callable function which is given
the chance to return ``True`` or ``False`` for any database reflected
object based on its name, including database schema names when
the :paramref:`.EnvironmentContext.configure.include_schemas` flag
is set to ``True``.
The function accepts the following positional arguments:
* ``name``: the name of the object, such as schema name or table name.
Will be ``None`` when indicating the default schema name of the
database connection.
* ``type``: a string describing the type of object; currently
``"schema"``, ``"table"``, ``"column"``, ``"index"``,
``"unique_constraint"``, or ``"foreign_key_constraint"``
* ``parent_names``: a dictionary of "parent" object names, that are
relative to the name being given. Keys in this dictionary may
include: ``"schema_name"``, ``"table_name"`` or
``"schema_qualified_table_name"``.
E.g.::
def include_name(name, type_, parent_names):
if type_ == "schema":
return name in ["schema_one", "schema_two"]
else:
return True
context.configure(
# ...
include_schemas = True,
include_name = include_name
)
.. seealso::
:ref:`autogenerate_include_hooks`
:paramref:`.EnvironmentContext.configure.include_object`
:paramref:`.EnvironmentContext.configure.include_schemas`
:param include_object: A callable function which is given
the chance to return ``True`` or ``False`` for any object,
indicating if the given object should be considered in the
autogenerate sweep.
The function accepts the following positional arguments:
* ``object``: a :class:`~sqlalchemy.schema.SchemaItem` object such
as a :class:`~sqlalchemy.schema.Table`,
:class:`~sqlalchemy.schema.Column`,
:class:`~sqlalchemy.schema.Index`
:class:`~sqlalchemy.schema.UniqueConstraint`,
or :class:`~sqlalchemy.schema.ForeignKeyConstraint` object
* ``name``: the name of the object. This is typically available
via ``object.name``.
* ``type``: a string describing the type of object; currently
``"table"``, ``"column"``, ``"index"``, ``"unique_constraint"``,
or ``"foreign_key_constraint"``
* ``reflected``: ``True`` if the given object was produced based on
table reflection, ``False`` if it's from a local :class:`.MetaData`
object.
* ``compare_to``: the object being compared against, if available,
else ``None``.
E.g.::
def include_object(object, name, type_, reflected, compare_to):
if (type_ == "column" and
not reflected and
object.info.get("skip_autogenerate", False)):
return False
else:
return True
context.configure(
# ...
include_object = include_object
)
For the use case of omitting specific schemas from a target database
when :paramref:`.EnvironmentContext.configure.include_schemas` is
set to ``True``, the :attr:`~sqlalchemy.schema.Table.schema`
attribute can be checked for each :class:`~sqlalchemy.schema.Table`
object passed to the hook, however it is much more efficient
to filter on schemas before reflection of objects takes place
using the :paramref:`.EnvironmentContext.configure.include_name`
hook.
.. seealso::
:ref:`autogenerate_include_hooks`
:paramref:`.EnvironmentContext.configure.include_name`
:paramref:`.EnvironmentContext.configure.include_schemas`
:param render_as_batch: if True, commands which alter elements
within a table will be placed under a ``with batch_alter_table():``
directive, so that batch migrations will take place.
.. seealso::
:ref:`batch_migrations`
:param include_schemas: If True, autogenerate will scan across
all schemas located by the SQLAlchemy
:meth:`~sqlalchemy.engine.reflection.Inspector.get_schema_names`
method, and include all differences in tables found across all
those schemas. When using this option, you may want to also
use the :paramref:`.EnvironmentContext.configure.include_name`
parameter to specify a callable which
can filter the tables/schemas that get included.
.. seealso::
:ref:`autogenerate_include_hooks`
:paramref:`.EnvironmentContext.configure.include_name`
:paramref:`.EnvironmentContext.configure.include_object`
:param render_item: Callable that can be used to override how
any schema item, i.e. column, constraint, type,
etc., is rendered for autogenerate. The callable receives a
string describing the type of object, the object, and
the autogen context. If it returns False, the
default rendering method will be used. If it returns None,
the item will not be rendered in the context of a Table
construct, that is, can be used to skip columns or constraints
within op.create_table()::
def my_render_column(type_, col, autogen_context):
if type_ == "column" and isinstance(col, MySpecialCol):
return repr(col)
else:
return False
context.configure(
# ...
render_item = my_render_column
)
Available values for the type string include: ``"column"``,
``"primary_key"``, ``"foreign_key"``, ``"unique"``, ``"check"``,
``"type"``, ``"server_default"``.
.. seealso::
:ref:`autogen_render_types`
:param upgrade_token: When autogenerate completes, the text of the
candidate upgrade operations will be present in this template
variable when ``script.py.mako`` is rendered. Defaults to
``upgrades``.
:param downgrade_token: When autogenerate completes, the text of the
candidate downgrade operations will be present in this
template variable when ``script.py.mako`` is rendered. Defaults to
``downgrades``.
:param alembic_module_prefix: When autogenerate refers to Alembic
:mod:`alembic.operations` constructs, this prefix will be used
(i.e. ``op.create_table``) Defaults to "``op.``".
Can be ``None`` to indicate no prefix.
:param sqlalchemy_module_prefix: When autogenerate refers to
SQLAlchemy
:class:`~sqlalchemy.schema.Column` or type classes, this prefix
will be used
(i.e. ``sa.Column("somename", sa.Integer)``) Defaults to "``sa.``".
Can be ``None`` to indicate no prefix.
Note that when dialect-specific types are rendered, autogenerate
will render them using the dialect module name, i.e. ``mssql.BIT()``,
``postgresql.UUID()``.
:param user_module_prefix: When autogenerate refers to a SQLAlchemy
type (e.g. :class:`.TypeEngine`) where the module name is not
under the ``sqlalchemy`` namespace, this prefix will be used
within autogenerate. If left at its default of
``None``, the ``__module__`` attribute of the type is used to
render the import module. It's a good practice to set this
and to have all custom types be available from a fixed module space,
in order to future-proof migration files against reorganizations
in modules.
.. seealso::
:ref:`autogen_module_prefix`
:param process_revision_directives: a callable function that will
be passed a structure representing the end result of an autogenerate
or plain "revision" operation, which can be manipulated to affect
how the ``alembic revision`` command ultimately outputs new
revision scripts. The structure of the callable is::
def process_revision_directives(context, revision, directives):
pass
The ``directives`` parameter is a Python list containing
a single :class:`.MigrationScript` directive, which represents
the revision file to be generated. This list as well as its
contents may be freely modified to produce any set of commands.
The section :ref:`customizing_revision` shows an example of
doing this. The ``context`` parameter is the
:class:`.MigrationContext` in use,
and ``revision`` is a tuple of revision identifiers representing the
current revision of the database.
The callable is invoked at all times when the ``--autogenerate``
option is passed to ``alembic revision``. If ``--autogenerate``
is not passed, the callable is invoked only if the
``revision_environment`` variable is set to True in the Alembic
configuration, in which case the given ``directives`` collection
will contain empty :class:`.UpgradeOps` and :class:`.DowngradeOps`
collections for ``.upgrade_ops`` and ``.downgrade_ops``. The
``--autogenerate`` option itself can be inferred by inspecting
``context.config.cmd_opts.autogenerate``.
The callable function may optionally be an instance of
a :class:`.Rewriter` object. This is a helper object that
assists in the production of autogenerate-stream rewriter functions.
.. seealso::
:ref:`customizing_revision`
:ref:`autogen_rewriter`
:paramref:`.command.revision.process_revision_directives`
Parameters specific to individual backends:
:param mssql_batch_separator: The "batch separator" which will
be placed between each statement when generating offline SQL Server
migrations. Defaults to ``GO``. Note this is in addition to the
customary semicolon ``;`` at the end of each statement; SQL Server
considers the "batch separator" to denote the end of an
individual statement execution, and cannot group certain
dependent operations in one step.
:param oracle_batch_separator: The "batch separator" which will
be placed between each statement when generating offline
Oracle migrations. Defaults to ``/``. Oracle doesn't add a
semicolon between statements like most other backends.
"""
def execute(
sql: Union[Executable, str],
execution_options: Optional[Dict[str, Any]] = None,
) -> None:
"""Execute the given SQL using the current change context.
The behavior of :meth:`.execute` is the same
as that of :meth:`.Operations.execute`. Please see that
function's documentation for full detail including
caveats and limitations.
This function requires that a :class:`.MigrationContext` has
first been made available via :meth:`.configure`.
"""
def get_bind() -> Connection:
"""Return the current 'bind'.
In "online" mode, this is the
:class:`sqlalchemy.engine.Connection` currently being used
to emit SQL to the database.
This function requires that a :class:`.MigrationContext`
has first been made available via :meth:`.configure`.
"""
def get_context() -> MigrationContext:
"""Return the current :class:`.MigrationContext` object.
If :meth:`.EnvironmentContext.configure` has not been
called yet, raises an exception.
"""
def get_head_revision() -> Union[str, Tuple[str, ...], None]:
"""Return the hex identifier of the 'head' script revision.
If the script directory has multiple heads, this
method raises a :class:`.CommandError`;
:meth:`.EnvironmentContext.get_head_revisions` should be preferred.
This function does not require that the :class:`.MigrationContext`
has been configured.
.. seealso:: :meth:`.EnvironmentContext.get_head_revisions`
"""
def get_head_revisions() -> Union[str, Tuple[str, ...], None]:
"""Return the hex identifier of the 'heads' script revision(s).
This returns a tuple containing the version number of all
heads in the script directory.
This function does not require that the :class:`.MigrationContext`
has been configured.
"""
def get_revision_argument() -> Union[str, Tuple[str, ...], None]:
"""Get the 'destination' revision argument.
This is typically the argument passed to the
``upgrade`` or ``downgrade`` command.
If it was specified as ``head``, the actual
version number is returned; if specified
as ``base``, ``None`` is returned.
This function does not require that the :class:`.MigrationContext`
has been configured.
"""
def get_starting_revision_argument() -> Union[str, Tuple[str, ...], None]:
"""Return the 'starting revision' argument,
if the revision was passed using ``start:end``.
This is only meaningful in "offline" mode.
Returns ``None`` if no value is available
or was configured.
This function does not require that the :class:`.MigrationContext`
has been configured.
"""
def get_tag_argument() -> Optional[str]:
"""Return the value passed for the ``--tag`` argument, if any.
The ``--tag`` argument is not used directly by Alembic,
but is available for custom ``env.py`` configurations that
wish to use it; particularly for offline generation scripts
that wish to generate tagged filenames.
This function does not require that the :class:`.MigrationContext`
has been configured.
.. seealso::
:meth:`.EnvironmentContext.get_x_argument` - a newer and more
open ended system of extending ``env.py`` scripts via the command
line.
"""
@overload
def get_x_argument(as_dictionary: Literal[False]) -> List[str]: ...
@overload
def get_x_argument(as_dictionary: Literal[True]) -> Dict[str, str]: ...
@overload
def get_x_argument(
as_dictionary: bool = ...,
) -> Union[List[str], Dict[str, str]]:
"""Return the value(s) passed for the ``-x`` argument, if any.
The ``-x`` argument is an open ended flag that allows any user-defined
value or values to be passed on the command line, then available
here for consumption by a custom ``env.py`` script.
The return value is a list, returned directly from the ``argparse``
structure. If ``as_dictionary=True`` is passed, the ``x`` arguments
are parsed using ``key=value`` format into a dictionary that is
then returned. If there is no ``=`` in the argument, value is an empty
string.
.. versionchanged:: 1.13.1 Support ``as_dictionary=True`` when
arguments are passed without the ``=`` symbol.
For example, to support passing a database URL on the command line,
the standard ``env.py`` script can be modified like this::
cmd_line_url = context.get_x_argument(
as_dictionary=True).get('dbname')
if cmd_line_url:
engine = create_engine(cmd_line_url)
else:
engine = engine_from_config(
config.get_section(config.config_ini_section),
prefix='sqlalchemy.',
poolclass=pool.NullPool)
This then takes effect by running the ``alembic`` script as::
alembic -x dbname=postgresql://user:pass@host/dbname upgrade head
This function does not require that the :class:`.MigrationContext`
has been configured.
.. seealso::
:meth:`.EnvironmentContext.get_tag_argument`
:attr:`.Config.cmd_opts`
"""
def is_offline_mode() -> bool:
"""Return True if the current migrations environment
is running in "offline mode".
This is ``True`` or ``False`` depending
on the ``--sql`` flag passed.
This function does not require that the :class:`.MigrationContext`
has been configured.
"""
def is_transactional_ddl() -> bool:
"""Return True if the context is configured to expect a
transactional DDL capable backend.
This defaults to the type of database in use, and
can be overridden by the ``transactional_ddl`` argument
to :meth:`.configure`
This function requires that a :class:`.MigrationContext`
has first been made available via :meth:`.configure`.
"""
def run_migrations(**kw: Any) -> None:
"""Run migrations as determined by the current command line
configuration
as well as versioning information present (or not) in the current
database connection (if one is present).
The function accepts optional ``**kw`` arguments. If these are
passed, they are sent directly to the ``upgrade()`` and
``downgrade()``
functions within each target revision file. By modifying the
``script.py.mako`` file so that the ``upgrade()`` and ``downgrade()``
functions accept arguments, parameters can be passed here so that
contextual information, usually information to identify a particular
database in use, can be passed from a custom ``env.py`` script
to the migration functions.
This function requires that a :class:`.MigrationContext` has
first been made available via :meth:`.configure`.
"""
script: ScriptDirectory
def static_output(text: str) -> None:
"""Emit text directly to the "offline" SQL stream.
Typically this is for emitting comments that
start with --. The statement is not treated
as a SQL execution, no ; or batch separator
is added, etc.
"""