Your IP : 3.15.218.243
#ifndef RBIMPL_INTERN_COMPLEX_H /*-*-C++-*-vi:se ft=cpp:*/
#define RBIMPL_INTERN_COMPLEX_H
/**
* @file
* @author Ruby developers <ruby-core@ruby-lang.org>
* @copyright This file is a part of the programming language Ruby.
* Permission is hereby granted, to either redistribute and/or
* modify this file, provided that the conditions mentioned in the
* file COPYING are met. Consult the file for details.
* @warning Symbols prefixed with either `RBIMPL` or `rbimpl` are
* implementation details. Don't take them as canon. They could
* rapidly appear then vanish. The name (path) of this header file
* is also an implementation detail. Do not expect it to persist
* at the place it is now. Developers are free to move it anywhere
* anytime at will.
* @note To ruby-core: remember that this header can be possibly
* recursively included from extension libraries written in C++.
* Do not expect for instance `__VA_ARGS__` is always available.
* We assume C99 for ruby itself but we don't assume languages of
* extension libraries. They could be written in C++98.
* @brief Public APIs related to ::rb_cComplex.
*/
#include "ruby/internal/attr/deprecated.h"
#include "ruby/internal/attr/pure.h"
#include "ruby/internal/dllexport.h"
#include "ruby/internal/value.h"
#include "ruby/internal/arithmetic/long.h" /* INT2FIX is here. */
RBIMPL_SYMBOL_EXPORT_BEGIN()
/* complex.c */
/**
* Identical to rb_complex_new(), except it assumes both arguments are not
* instances of ::rb_cComplex. It is thus dangerous for extension libraries.
*
* @param[in] real Real part, in any numeric except Complex.
* @param[in] imag Imaginary part, in any numeric except Complex.
* @return An instance of ::rb_cComplex whose value is `real + (imag)i`.
*/
VALUE rb_complex_raw(VALUE real, VALUE imag);
/**
* Shorthand of `x+0i`. It practically converts `x` into a Complex of the
* identical value.
*
* @param[in] x Any numeric except Complex.
* @return An instance of ::rb_cComplex, whose value is `x + 0i`.
*/
#define rb_complex_raw1(x) rb_complex_raw((x), INT2FIX(0))
/** @alias{rb_complex_raw} */
#define rb_complex_raw2(x,y) rb_complex_raw((x), (y))
/**
* Constructs a Complex, by first multiplying the imaginary part with `1i` then
* adds it to the real part. This definition doesn't need both arguments be
* real numbers. It can happily combine two instances of ::rb_cComplex (with
* rotating the latter one).
*
* @param[in] real An instance of ::rb_cNumeric.
* @param[in] imag Another instance of ::rb_cNumeric.
* @return An instance of ::rb_cComplex whose value is `imag * 1i + real`.
*/
VALUE rb_complex_new(VALUE real, VALUE imag);
/**
* Shorthand of `x+0i`. It practically converts `x` into a Complex of the
* identical value.
*
* @param[in] x Any numeric value.
* @return An instance of ::rb_cComplex, whose value is `x + 0i`.
*/
#define rb_complex_new1(x) rb_complex_new((x), INT2FIX(0))
/** @alias{rb_complex_new} */
#define rb_complex_new2(x,y) rb_complex_new((x), (y))
/**
* Constructs a Complex using polar representations. Unlike rb_complex_new()
* it makes no sense to pass non-real instances to this function.
*
* @param[in] abs Magnitude, in any numeric except Complex.
* @param[in] arg Angle, in radians, in any numeric except Complex.
* @return An instance of ::rb_cComplex which denotes the given polar
* coordinates.
*/
VALUE rb_complex_new_polar(VALUE abs, VALUE arg);
RBIMPL_ATTR_DEPRECATED(("by: rb_complex_new_polar"))
/** @old{rb_complex_new_polar} */
VALUE rb_complex_polar(VALUE abs, VALUE arg);
RBIMPL_ATTR_PURE()
/**
* Queries the real part of the passed Complex.
*
* @param[in] z An instance of ::rb_cComplex.
* @return Its real part, which is an instance of ::rb_cNumeric.
*/
VALUE rb_complex_real(VALUE z);
RBIMPL_ATTR_PURE()
/**
* Queries the imaginary part of the passed Complex.
*
* @param[in] z An instance of ::rb_cComplex.
* @return Its imaginary part, which is an instance of ::rb_cNumeric.
*/
VALUE rb_complex_imag(VALUE z);
/**
* Performs addition of the passed two objects.
*
* @param[in] x An instance of ::rb_cComplex.
* @param[in] y Arbitrary ruby object.
* @return What `x + y` evaluates to.
* @see rb_num_coerce_bin()
*/
VALUE rb_complex_plus(VALUE x, VALUE y);
/**
* Performs subtraction of the passed two objects.
*
* @param[in] x An instance of ::rb_cComplex.
* @param[in] y Arbitrary ruby object.
* @return What `x - y` evaluates to.
* @see rb_num_coerce_bin()
*/
VALUE rb_complex_minus(VALUE x, VALUE y);
/**
* Performs multiplication of the passed two objects.
*
* @param[in] x An instance of ::rb_cComplex.
* @param[in] y Arbitrary ruby object.
* @return What `x * y` evaluates to.
* @see rb_num_coerce_bin()
*/
VALUE rb_complex_mul(VALUE x, VALUE y);
/**
* Performs division of the passed two objects.
*
* @param[in] x An instance of ::rb_cComplex.
* @param[in] y Arbitrary ruby object.
* @return What `x / y` evaluates to.
* @see rb_num_coerce_bin()
*/
VALUE rb_complex_div(VALUE x, VALUE y);
/**
* Performs negation of the passed object.
*
* @param[in] z An instance of ::rb_cComplex.
* @return What `-z` evaluates to.
*/
VALUE rb_complex_uminus(VALUE z);
/**
* Performs complex conjugation of the passed object.
*
* @param[in] z An instance of ::rb_cComplex.
* @return Its complex conjugate, in ::rb_cComplex.
*/
VALUE rb_complex_conjugate(VALUE z);
/**
* Queries the absolute (or the magnitude) of the passed object.
*
* @param[in] z An instance of ::rb_cComplex.
* @return Its magnitude, in ::rb_cFloat.
*/
VALUE rb_complex_abs(VALUE z);
/**
* Queries the argument (or the angle) of the passed object.
*
* @param[in] z An instance of ::rb_cComplex.
* @return Its magnitude, in ::rb_cFloat.
*/
VALUE rb_complex_arg(VALUE z);
/**
* Performs exponentiation of the passed two objects.
*
* @param[in] base An instance of ::rb_cComplex.
* @param[in] exp Arbitrary ruby object.
* @return What `base ** exp` evaluates to.
* @see rb_num_coerce_bin()
*/
VALUE rb_complex_pow(VALUE base, VALUE exp);
/**
* Identical to rb_complex_new(), except it takes the arguments as C's double
* instead of Ruby's object.
*
* @param[in] real Real part.
* @param[in] imag Imaginary part.
* @return An instance of ::rb_cComplex whose value is `real + (imag)i`.
*/
VALUE rb_dbl_complex_new(double real, double imag);
/** @alias{rb_complex_plus} */
#define rb_complex_add rb_complex_plus
/** @alias{rb_complex_minus} */
#define rb_complex_sub rb_complex_minus
/** @alias{rb_complex_uminus} */
#define rb_complex_nagate rb_complex_uminus
/**
* Converts various values into a Complex. This function accepts:
*
* - Instances of ::rb_cComplex (taken as-is),
* - Instances of ::rb_cNumeric (adds `0i`),
* - Instances of ::rb_cString (parses),
* - Other objects that respond to `#to_c`.
*
* It (possibly recursively) applies `#to_c` until both sides become a Complex
* value, then computes `imag * 1i + real`.
*
* As a special case, passing ::RUBY_Qundef to `imag` is the same as passing
* `RB_INT2NUM(0)`.
*
* @param[in] real Real part (see above).
* @param[in] imag Imaginary part (see above).
* @exception rb_eTypeError Passed something not described above.
* @return An instance of ::rb_cComplex whose value is `1i * imag + real`.
*
* @internal
*
* This was the implementation of `Kernel#Complex` before, but they diverged.
*/
VALUE rb_Complex(VALUE real, VALUE imag);
/**
* Shorthand of `x+0i`. It practically converts `x` into a Complex of the
* identical value.
*
* @param[in] x ::rb_cNumeric, ::rb_cString, or something that responds to
* `#to_c`.
* @return An instance of ::rb_cComplex, whose value is `x + 0i`.
*/
#define rb_Complex1(x) rb_Complex((x), INT2FIX(0))
/** @alias{rb_Complex} */
#define rb_Complex2(x,y) rb_Complex((x), (y))
RBIMPL_SYMBOL_EXPORT_END()
#endif /* RBIMPL_INTERN_COMPLEX_H */