Your IP : 18.118.120.13
# orm/collections.py
# Copyright (C) 2005-2024 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
# mypy: allow-untyped-defs, allow-untyped-calls
"""Support for collections of mapped entities.
The collections package supplies the machinery used to inform the ORM of
collection membership changes. An instrumentation via decoration approach is
used, allowing arbitrary types (including built-ins) to be used as entity
collections without requiring inheritance from a base class.
Instrumentation decoration relays membership change events to the
:class:`.CollectionAttributeImpl` that is currently managing the collection.
The decorators observe function call arguments and return values, tracking
entities entering or leaving the collection. Two decorator approaches are
provided. One is a bundle of generic decorators that map function arguments
and return values to events::
from sqlalchemy.orm.collections import collection
class MyClass:
# ...
@collection.adds(1)
def store(self, item):
self.data.append(item)
@collection.removes_return()
def pop(self):
return self.data.pop()
The second approach is a bundle of targeted decorators that wrap appropriate
append and remove notifiers around the mutation methods present in the
standard Python ``list``, ``set`` and ``dict`` interfaces. These could be
specified in terms of generic decorator recipes, but are instead hand-tooled
for increased efficiency. The targeted decorators occasionally implement
adapter-like behavior, such as mapping bulk-set methods (``extend``,
``update``, ``__setslice__``, etc.) into the series of atomic mutation events
that the ORM requires.
The targeted decorators are used internally for automatic instrumentation of
entity collection classes. Every collection class goes through a
transformation process roughly like so:
1. If the class is a built-in, substitute a trivial sub-class
2. Is this class already instrumented?
3. Add in generic decorators
4. Sniff out the collection interface through duck-typing
5. Add targeted decoration to any undecorated interface method
This process modifies the class at runtime, decorating methods and adding some
bookkeeping properties. This isn't possible (or desirable) for built-in
classes like ``list``, so trivial sub-classes are substituted to hold
decoration::
class InstrumentedList(list):
pass
Collection classes can be specified in ``relationship(collection_class=)`` as
types or a function that returns an instance. Collection classes are
inspected and instrumented during the mapper compilation phase. The
collection_class callable will be executed once to produce a specimen
instance, and the type of that specimen will be instrumented. Functions that
return built-in types like ``lists`` will be adapted to produce instrumented
instances.
When extending a known type like ``list``, additional decorations are not
generally not needed. Odds are, the extension method will delegate to a
method that's already instrumented. For example::
class QueueIsh(list):
def push(self, item):
self.append(item)
def shift(self):
return self.pop(0)
There's no need to decorate these methods. ``append`` and ``pop`` are already
instrumented as part of the ``list`` interface. Decorating them would fire
duplicate events, which should be avoided.
The targeted decoration tries not to rely on other methods in the underlying
collection class, but some are unavoidable. Many depend on 'read' methods
being present to properly instrument a 'write', for example, ``__setitem__``
needs ``__getitem__``. "Bulk" methods like ``update`` and ``extend`` may also
reimplemented in terms of atomic appends and removes, so the ``extend``
decoration will actually perform many ``append`` operations and not call the
underlying method at all.
Tight control over bulk operation and the firing of events is also possible by
implementing the instrumentation internally in your methods. The basic
instrumentation package works under the general assumption that collection
mutation will not raise unusual exceptions. If you want to closely
orchestrate append and remove events with exception management, internal
instrumentation may be the answer. Within your method,
``collection_adapter(self)`` will retrieve an object that you can use for
explicit control over triggering append and remove events.
The owning object and :class:`.CollectionAttributeImpl` are also reachable
through the adapter, allowing for some very sophisticated behavior.
"""
from __future__ import annotations
import operator
import threading
import typing
from typing import Any
from typing import Callable
from typing import cast
from typing import Collection
from typing import Dict
from typing import Iterable
from typing import List
from typing import NoReturn
from typing import Optional
from typing import Set
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
import weakref
from .base import NO_KEY
from .. import exc as sa_exc
from .. import util
from ..sql.base import NO_ARG
from ..util.compat import inspect_getfullargspec
from ..util.typing import Protocol
if typing.TYPE_CHECKING:
from .attributes import AttributeEventToken
from .attributes import CollectionAttributeImpl
from .mapped_collection import attribute_keyed_dict
from .mapped_collection import column_keyed_dict
from .mapped_collection import keyfunc_mapping
from .mapped_collection import KeyFuncDict # noqa: F401
from .state import InstanceState
__all__ = [
"collection",
"collection_adapter",
"keyfunc_mapping",
"column_keyed_dict",
"attribute_keyed_dict",
"KeyFuncDict",
# old names in < 2.0
"mapped_collection",
"column_mapped_collection",
"attribute_mapped_collection",
"MappedCollection",
]
__instrumentation_mutex = threading.Lock()
_CollectionFactoryType = Callable[[], "_AdaptedCollectionProtocol"]
_T = TypeVar("_T", bound=Any)
_KT = TypeVar("_KT", bound=Any)
_VT = TypeVar("_VT", bound=Any)
_COL = TypeVar("_COL", bound="Collection[Any]")
_FN = TypeVar("_FN", bound="Callable[..., Any]")
class _CollectionConverterProtocol(Protocol):
def __call__(self, collection: _COL) -> _COL: ...
class _AdaptedCollectionProtocol(Protocol):
_sa_adapter: CollectionAdapter
_sa_appender: Callable[..., Any]
_sa_remover: Callable[..., Any]
_sa_iterator: Callable[..., Iterable[Any]]
_sa_converter: _CollectionConverterProtocol
class collection:
"""Decorators for entity collection classes.
The decorators fall into two groups: annotations and interception recipes.
The annotating decorators (appender, remover, iterator, converter,
internally_instrumented) indicate the method's purpose and take no
arguments. They are not written with parens::
@collection.appender
def append(self, append): ...
The recipe decorators all require parens, even those that take no
arguments::
@collection.adds('entity')
def insert(self, position, entity): ...
@collection.removes_return()
def popitem(self): ...
"""
# Bundled as a class solely for ease of use: packaging, doc strings,
# importability.
@staticmethod
def appender(fn):
"""Tag the method as the collection appender.
The appender method is called with one positional argument: the value
to append. The method will be automatically decorated with 'adds(1)'
if not already decorated::
@collection.appender
def add(self, append): ...
# or, equivalently
@collection.appender
@collection.adds(1)
def add(self, append): ...
# for mapping type, an 'append' may kick out a previous value
# that occupies that slot. consider d['a'] = 'foo'- any previous
# value in d['a'] is discarded.
@collection.appender
@collection.replaces(1)
def add(self, entity):
key = some_key_func(entity)
previous = None
if key in self:
previous = self[key]
self[key] = entity
return previous
If the value to append is not allowed in the collection, you may
raise an exception. Something to remember is that the appender
will be called for each object mapped by a database query. If the
database contains rows that violate your collection semantics, you
will need to get creative to fix the problem, as access via the
collection will not work.
If the appender method is internally instrumented, you must also
receive the keyword argument '_sa_initiator' and ensure its
promulgation to collection events.
"""
fn._sa_instrument_role = "appender"
return fn
@staticmethod
def remover(fn):
"""Tag the method as the collection remover.
The remover method is called with one positional argument: the value
to remove. The method will be automatically decorated with
:meth:`removes_return` if not already decorated::
@collection.remover
def zap(self, entity): ...
# or, equivalently
@collection.remover
@collection.removes_return()
def zap(self, ): ...
If the value to remove is not present in the collection, you may
raise an exception or return None to ignore the error.
If the remove method is internally instrumented, you must also
receive the keyword argument '_sa_initiator' and ensure its
promulgation to collection events.
"""
fn._sa_instrument_role = "remover"
return fn
@staticmethod
def iterator(fn):
"""Tag the method as the collection remover.
The iterator method is called with no arguments. It is expected to
return an iterator over all collection members::
@collection.iterator
def __iter__(self): ...
"""
fn._sa_instrument_role = "iterator"
return fn
@staticmethod
def internally_instrumented(fn):
"""Tag the method as instrumented.
This tag will prevent any decoration from being applied to the
method. Use this if you are orchestrating your own calls to
:func:`.collection_adapter` in one of the basic SQLAlchemy
interface methods, or to prevent an automatic ABC method
decoration from wrapping your implementation::
# normally an 'extend' method on a list-like class would be
# automatically intercepted and re-implemented in terms of
# SQLAlchemy events and append(). your implementation will
# never be called, unless:
@collection.internally_instrumented
def extend(self, items): ...
"""
fn._sa_instrumented = True
return fn
@staticmethod
@util.deprecated(
"1.3",
"The :meth:`.collection.converter` handler is deprecated and will "
"be removed in a future release. Please refer to the "
":class:`.AttributeEvents.bulk_replace` listener interface in "
"conjunction with the :func:`.event.listen` function.",
)
def converter(fn):
"""Tag the method as the collection converter.
This optional method will be called when a collection is being
replaced entirely, as in::
myobj.acollection = [newvalue1, newvalue2]
The converter method will receive the object being assigned and should
return an iterable of values suitable for use by the ``appender``
method. A converter must not assign values or mutate the collection,
its sole job is to adapt the value the user provides into an iterable
of values for the ORM's use.
The default converter implementation will use duck-typing to do the
conversion. A dict-like collection will be convert into an iterable
of dictionary values, and other types will simply be iterated::
@collection.converter
def convert(self, other): ...
If the duck-typing of the object does not match the type of this
collection, a TypeError is raised.
Supply an implementation of this method if you want to expand the
range of possible types that can be assigned in bulk or perform
validation on the values about to be assigned.
"""
fn._sa_instrument_role = "converter"
return fn
@staticmethod
def adds(arg):
"""Mark the method as adding an entity to the collection.
Adds "add to collection" handling to the method. The decorator
argument indicates which method argument holds the SQLAlchemy-relevant
value. Arguments can be specified positionally (i.e. integer) or by
name::
@collection.adds(1)
def push(self, item): ...
@collection.adds('entity')
def do_stuff(self, thing, entity=None): ...
"""
def decorator(fn):
fn._sa_instrument_before = ("fire_append_event", arg)
return fn
return decorator
@staticmethod
def replaces(arg):
"""Mark the method as replacing an entity in the collection.
Adds "add to collection" and "remove from collection" handling to
the method. The decorator argument indicates which method argument
holds the SQLAlchemy-relevant value to be added, and return value, if
any will be considered the value to remove.
Arguments can be specified positionally (i.e. integer) or by name::
@collection.replaces(2)
def __setitem__(self, index, item): ...
"""
def decorator(fn):
fn._sa_instrument_before = ("fire_append_event", arg)
fn._sa_instrument_after = "fire_remove_event"
return fn
return decorator
@staticmethod
def removes(arg):
"""Mark the method as removing an entity in the collection.
Adds "remove from collection" handling to the method. The decorator
argument indicates which method argument holds the SQLAlchemy-relevant
value to be removed. Arguments can be specified positionally (i.e.
integer) or by name::
@collection.removes(1)
def zap(self, item): ...
For methods where the value to remove is not known at call-time, use
collection.removes_return.
"""
def decorator(fn):
fn._sa_instrument_before = ("fire_remove_event", arg)
return fn
return decorator
@staticmethod
def removes_return():
"""Mark the method as removing an entity in the collection.
Adds "remove from collection" handling to the method. The return
value of the method, if any, is considered the value to remove. The
method arguments are not inspected::
@collection.removes_return()
def pop(self): ...
For methods where the value to remove is known at call-time, use
collection.remove.
"""
def decorator(fn):
fn._sa_instrument_after = "fire_remove_event"
return fn
return decorator
if TYPE_CHECKING:
def collection_adapter(collection: Collection[Any]) -> CollectionAdapter:
"""Fetch the :class:`.CollectionAdapter` for a collection."""
else:
collection_adapter = operator.attrgetter("_sa_adapter")
class CollectionAdapter:
"""Bridges between the ORM and arbitrary Python collections.
Proxies base-level collection operations (append, remove, iterate)
to the underlying Python collection, and emits add/remove events for
entities entering or leaving the collection.
The ORM uses :class:`.CollectionAdapter` exclusively for interaction with
entity collections.
"""
__slots__ = (
"attr",
"_key",
"_data",
"owner_state",
"_converter",
"invalidated",
"empty",
)
attr: CollectionAttributeImpl
_key: str
# this is actually a weakref; see note in constructor
_data: Callable[..., _AdaptedCollectionProtocol]
owner_state: InstanceState[Any]
_converter: _CollectionConverterProtocol
invalidated: bool
empty: bool
def __init__(
self,
attr: CollectionAttributeImpl,
owner_state: InstanceState[Any],
data: _AdaptedCollectionProtocol,
):
self.attr = attr
self._key = attr.key
# this weakref stays referenced throughout the lifespan of
# CollectionAdapter. so while the weakref can return None, this
# is realistically only during garbage collection of this object, so
# we type this as a callable that returns _AdaptedCollectionProtocol
# in all cases.
self._data = weakref.ref(data) # type: ignore
self.owner_state = owner_state
data._sa_adapter = self
self._converter = data._sa_converter
self.invalidated = False
self.empty = False
def _warn_invalidated(self) -> None:
util.warn("This collection has been invalidated.")
@property
def data(self) -> _AdaptedCollectionProtocol:
"The entity collection being adapted."
return self._data()
@property
def _referenced_by_owner(self) -> bool:
"""return True if the owner state still refers to this collection.
This will return False within a bulk replace operation,
where this collection is the one being replaced.
"""
return self.owner_state.dict[self._key] is self._data()
def bulk_appender(self):
return self._data()._sa_appender
def append_with_event(
self, item: Any, initiator: Optional[AttributeEventToken] = None
) -> None:
"""Add an entity to the collection, firing mutation events."""
self._data()._sa_appender(item, _sa_initiator=initiator)
def _set_empty(self, user_data):
assert (
not self.empty
), "This collection adapter is already in the 'empty' state"
self.empty = True
self.owner_state._empty_collections[self._key] = user_data
def _reset_empty(self) -> None:
assert (
self.empty
), "This collection adapter is not in the 'empty' state"
self.empty = False
self.owner_state.dict[self._key] = (
self.owner_state._empty_collections.pop(self._key)
)
def _refuse_empty(self) -> NoReturn:
raise sa_exc.InvalidRequestError(
"This is a special 'empty' collection which cannot accommodate "
"internal mutation operations"
)
def append_without_event(self, item: Any) -> None:
"""Add or restore an entity to the collection, firing no events."""
if self.empty:
self._refuse_empty()
self._data()._sa_appender(item, _sa_initiator=False)
def append_multiple_without_event(self, items: Iterable[Any]) -> None:
"""Add or restore an entity to the collection, firing no events."""
if self.empty:
self._refuse_empty()
appender = self._data()._sa_appender
for item in items:
appender(item, _sa_initiator=False)
def bulk_remover(self):
return self._data()._sa_remover
def remove_with_event(
self, item: Any, initiator: Optional[AttributeEventToken] = None
) -> None:
"""Remove an entity from the collection, firing mutation events."""
self._data()._sa_remover(item, _sa_initiator=initiator)
def remove_without_event(self, item: Any) -> None:
"""Remove an entity from the collection, firing no events."""
if self.empty:
self._refuse_empty()
self._data()._sa_remover(item, _sa_initiator=False)
def clear_with_event(
self, initiator: Optional[AttributeEventToken] = None
) -> None:
"""Empty the collection, firing a mutation event for each entity."""
if self.empty:
self._refuse_empty()
remover = self._data()._sa_remover
for item in list(self):
remover(item, _sa_initiator=initiator)
def clear_without_event(self) -> None:
"""Empty the collection, firing no events."""
if self.empty:
self._refuse_empty()
remover = self._data()._sa_remover
for item in list(self):
remover(item, _sa_initiator=False)
def __iter__(self):
"""Iterate over entities in the collection."""
return iter(self._data()._sa_iterator())
def __len__(self):
"""Count entities in the collection."""
return len(list(self._data()._sa_iterator()))
def __bool__(self):
return True
def _fire_append_wo_mutation_event_bulk(
self, items, initiator=None, key=NO_KEY
):
if not items:
return
if initiator is not False:
if self.invalidated:
self._warn_invalidated()
if self.empty:
self._reset_empty()
for item in items:
self.attr.fire_append_wo_mutation_event(
self.owner_state,
self.owner_state.dict,
item,
initiator,
key,
)
def fire_append_wo_mutation_event(self, item, initiator=None, key=NO_KEY):
"""Notify that a entity is entering the collection but is already
present.
Initiator is a token owned by the InstrumentedAttribute that
initiated the membership mutation, and should be left as None
unless you are passing along an initiator value from a chained
operation.
.. versionadded:: 1.4.15
"""
if initiator is not False:
if self.invalidated:
self._warn_invalidated()
if self.empty:
self._reset_empty()
return self.attr.fire_append_wo_mutation_event(
self.owner_state, self.owner_state.dict, item, initiator, key
)
else:
return item
def fire_append_event(self, item, initiator=None, key=NO_KEY):
"""Notify that a entity has entered the collection.
Initiator is a token owned by the InstrumentedAttribute that
initiated the membership mutation, and should be left as None
unless you are passing along an initiator value from a chained
operation.
"""
if initiator is not False:
if self.invalidated:
self._warn_invalidated()
if self.empty:
self._reset_empty()
return self.attr.fire_append_event(
self.owner_state, self.owner_state.dict, item, initiator, key
)
else:
return item
def _fire_remove_event_bulk(self, items, initiator=None, key=NO_KEY):
if not items:
return
if initiator is not False:
if self.invalidated:
self._warn_invalidated()
if self.empty:
self._reset_empty()
for item in items:
self.attr.fire_remove_event(
self.owner_state,
self.owner_state.dict,
item,
initiator,
key,
)
def fire_remove_event(self, item, initiator=None, key=NO_KEY):
"""Notify that a entity has been removed from the collection.
Initiator is the InstrumentedAttribute that initiated the membership
mutation, and should be left as None unless you are passing along
an initiator value from a chained operation.
"""
if initiator is not False:
if self.invalidated:
self._warn_invalidated()
if self.empty:
self._reset_empty()
self.attr.fire_remove_event(
self.owner_state, self.owner_state.dict, item, initiator, key
)
def fire_pre_remove_event(self, initiator=None, key=NO_KEY):
"""Notify that an entity is about to be removed from the collection.
Only called if the entity cannot be removed after calling
fire_remove_event().
"""
if self.invalidated:
self._warn_invalidated()
self.attr.fire_pre_remove_event(
self.owner_state,
self.owner_state.dict,
initiator=initiator,
key=key,
)
def __getstate__(self):
return {
"key": self._key,
"owner_state": self.owner_state,
"owner_cls": self.owner_state.class_,
"data": self.data,
"invalidated": self.invalidated,
"empty": self.empty,
}
def __setstate__(self, d):
self._key = d["key"]
self.owner_state = d["owner_state"]
# see note in constructor regarding this type: ignore
self._data = weakref.ref(d["data"]) # type: ignore
self._converter = d["data"]._sa_converter
d["data"]._sa_adapter = self
self.invalidated = d["invalidated"]
self.attr = getattr(d["owner_cls"], self._key).impl
self.empty = d.get("empty", False)
def bulk_replace(values, existing_adapter, new_adapter, initiator=None):
"""Load a new collection, firing events based on prior like membership.
Appends instances in ``values`` onto the ``new_adapter``. Events will be
fired for any instance not present in the ``existing_adapter``. Any
instances in ``existing_adapter`` not present in ``values`` will have
remove events fired upon them.
:param values: An iterable of collection member instances
:param existing_adapter: A :class:`.CollectionAdapter` of
instances to be replaced
:param new_adapter: An empty :class:`.CollectionAdapter`
to load with ``values``
"""
assert isinstance(values, list)
idset = util.IdentitySet
existing_idset = idset(existing_adapter or ())
constants = existing_idset.intersection(values or ())
additions = idset(values or ()).difference(constants)
removals = existing_idset.difference(constants)
appender = new_adapter.bulk_appender()
for member in values or ():
if member in additions:
appender(member, _sa_initiator=initiator)
elif member in constants:
appender(member, _sa_initiator=False)
if existing_adapter:
existing_adapter._fire_append_wo_mutation_event_bulk(
constants, initiator=initiator
)
existing_adapter._fire_remove_event_bulk(removals, initiator=initiator)
def prepare_instrumentation(
factory: Union[Type[Collection[Any]], _CollectionFactoryType],
) -> _CollectionFactoryType:
"""Prepare a callable for future use as a collection class factory.
Given a collection class factory (either a type or no-arg callable),
return another factory that will produce compatible instances when
called.
This function is responsible for converting collection_class=list
into the run-time behavior of collection_class=InstrumentedList.
"""
impl_factory: _CollectionFactoryType
# Convert a builtin to 'Instrumented*'
if factory in __canned_instrumentation:
impl_factory = __canned_instrumentation[factory]
else:
impl_factory = cast(_CollectionFactoryType, factory)
cls: Union[_CollectionFactoryType, Type[Collection[Any]]]
# Create a specimen
cls = type(impl_factory())
# Did factory callable return a builtin?
if cls in __canned_instrumentation:
# if so, just convert.
# in previous major releases, this codepath wasn't working and was
# not covered by tests. prior to that it supplied a "wrapper"
# function that would return the class, though the rationale for this
# case is not known
impl_factory = __canned_instrumentation[cls]
cls = type(impl_factory())
# Instrument the class if needed.
if __instrumentation_mutex.acquire():
try:
if getattr(cls, "_sa_instrumented", None) != id(cls):
_instrument_class(cls)
finally:
__instrumentation_mutex.release()
return impl_factory
def _instrument_class(cls):
"""Modify methods in a class and install instrumentation."""
# In the normal call flow, a request for any of the 3 basic collection
# types is transformed into one of our trivial subclasses
# (e.g. InstrumentedList). Catch anything else that sneaks in here...
if cls.__module__ == "__builtin__":
raise sa_exc.ArgumentError(
"Can not instrument a built-in type. Use a "
"subclass, even a trivial one."
)
roles, methods = _locate_roles_and_methods(cls)
_setup_canned_roles(cls, roles, methods)
_assert_required_roles(cls, roles, methods)
_set_collection_attributes(cls, roles, methods)
def _locate_roles_and_methods(cls):
"""search for _sa_instrument_role-decorated methods in
method resolution order, assign to roles.
"""
roles: Dict[str, str] = {}
methods: Dict[str, Tuple[Optional[str], Optional[int], Optional[str]]] = {}
for supercls in cls.__mro__:
for name, method in vars(supercls).items():
if not callable(method):
continue
# note role declarations
if hasattr(method, "_sa_instrument_role"):
role = method._sa_instrument_role
assert role in (
"appender",
"remover",
"iterator",
"converter",
)
roles.setdefault(role, name)
# transfer instrumentation requests from decorated function
# to the combined queue
before: Optional[Tuple[str, int]] = None
after: Optional[str] = None
if hasattr(method, "_sa_instrument_before"):
op, argument = method._sa_instrument_before
assert op in ("fire_append_event", "fire_remove_event")
before = op, argument
if hasattr(method, "_sa_instrument_after"):
op = method._sa_instrument_after
assert op in ("fire_append_event", "fire_remove_event")
after = op
if before:
methods[name] = before + (after,)
elif after:
methods[name] = None, None, after
return roles, methods
def _setup_canned_roles(cls, roles, methods):
"""see if this class has "canned" roles based on a known
collection type (dict, set, list). Apply those roles
as needed to the "roles" dictionary, and also
prepare "decorator" methods
"""
collection_type = util.duck_type_collection(cls)
if collection_type in __interfaces:
assert collection_type is not None
canned_roles, decorators = __interfaces[collection_type]
for role, name in canned_roles.items():
roles.setdefault(role, name)
# apply ABC auto-decoration to methods that need it
for method, decorator in decorators.items():
fn = getattr(cls, method, None)
if (
fn
and method not in methods
and not hasattr(fn, "_sa_instrumented")
):
setattr(cls, method, decorator(fn))
def _assert_required_roles(cls, roles, methods):
"""ensure all roles are present, and apply implicit instrumentation if
needed
"""
if "appender" not in roles or not hasattr(cls, roles["appender"]):
raise sa_exc.ArgumentError(
"Type %s must elect an appender method to be "
"a collection class" % cls.__name__
)
elif roles["appender"] not in methods and not hasattr(
getattr(cls, roles["appender"]), "_sa_instrumented"
):
methods[roles["appender"]] = ("fire_append_event", 1, None)
if "remover" not in roles or not hasattr(cls, roles["remover"]):
raise sa_exc.ArgumentError(
"Type %s must elect a remover method to be "
"a collection class" % cls.__name__
)
elif roles["remover"] not in methods and not hasattr(
getattr(cls, roles["remover"]), "_sa_instrumented"
):
methods[roles["remover"]] = ("fire_remove_event", 1, None)
if "iterator" not in roles or not hasattr(cls, roles["iterator"]):
raise sa_exc.ArgumentError(
"Type %s must elect an iterator method to be "
"a collection class" % cls.__name__
)
def _set_collection_attributes(cls, roles, methods):
"""apply ad-hoc instrumentation from decorators, class-level defaults
and implicit role declarations
"""
for method_name, (before, argument, after) in methods.items():
setattr(
cls,
method_name,
_instrument_membership_mutator(
getattr(cls, method_name), before, argument, after
),
)
# intern the role map
for role, method_name in roles.items():
setattr(cls, "_sa_%s" % role, getattr(cls, method_name))
cls._sa_adapter = None
if not hasattr(cls, "_sa_converter"):
cls._sa_converter = None
cls._sa_instrumented = id(cls)
def _instrument_membership_mutator(method, before, argument, after):
"""Route method args and/or return value through the collection
adapter."""
# This isn't smart enough to handle @adds(1) for 'def fn(self, (a, b))'
if before:
fn_args = list(
util.flatten_iterator(inspect_getfullargspec(method)[0])
)
if isinstance(argument, int):
pos_arg = argument
named_arg = len(fn_args) > argument and fn_args[argument] or None
else:
if argument in fn_args:
pos_arg = fn_args.index(argument)
else:
pos_arg = None
named_arg = argument
del fn_args
def wrapper(*args, **kw):
if before:
if pos_arg is None:
if named_arg not in kw:
raise sa_exc.ArgumentError(
"Missing argument %s" % argument
)
value = kw[named_arg]
else:
if len(args) > pos_arg:
value = args[pos_arg]
elif named_arg in kw:
value = kw[named_arg]
else:
raise sa_exc.ArgumentError(
"Missing argument %s" % argument
)
initiator = kw.pop("_sa_initiator", None)
if initiator is False:
executor = None
else:
executor = args[0]._sa_adapter
if before and executor:
getattr(executor, before)(value, initiator)
if not after or not executor:
return method(*args, **kw)
else:
res = method(*args, **kw)
if res is not None:
getattr(executor, after)(res, initiator)
return res
wrapper._sa_instrumented = True # type: ignore[attr-defined]
if hasattr(method, "_sa_instrument_role"):
wrapper._sa_instrument_role = method._sa_instrument_role # type: ignore[attr-defined] # noqa: E501
wrapper.__name__ = method.__name__
wrapper.__doc__ = method.__doc__
return wrapper
def __set_wo_mutation(collection, item, _sa_initiator=None):
"""Run set wo mutation events.
The collection is not mutated.
"""
if _sa_initiator is not False:
executor = collection._sa_adapter
if executor:
executor.fire_append_wo_mutation_event(
item, _sa_initiator, key=None
)
def __set(collection, item, _sa_initiator, key):
"""Run set events.
This event always occurs before the collection is actually mutated.
"""
if _sa_initiator is not False:
executor = collection._sa_adapter
if executor:
item = executor.fire_append_event(item, _sa_initiator, key=key)
return item
def __del(collection, item, _sa_initiator, key):
"""Run del events.
This event occurs before the collection is actually mutated, *except*
in the case of a pop operation, in which case it occurs afterwards.
For pop operations, the __before_pop hook is called before the
operation occurs.
"""
if _sa_initiator is not False:
executor = collection._sa_adapter
if executor:
executor.fire_remove_event(item, _sa_initiator, key=key)
def __before_pop(collection, _sa_initiator=None):
"""An event which occurs on a before a pop() operation occurs."""
executor = collection._sa_adapter
if executor:
executor.fire_pre_remove_event(_sa_initiator)
def _list_decorators() -> Dict[str, Callable[[_FN], _FN]]:
"""Tailored instrumentation wrappers for any list-like class."""
def _tidy(fn):
fn._sa_instrumented = True
fn.__doc__ = getattr(list, fn.__name__).__doc__
def append(fn):
def append(self, item, _sa_initiator=None):
item = __set(self, item, _sa_initiator, NO_KEY)
fn(self, item)
_tidy(append)
return append
def remove(fn):
def remove(self, value, _sa_initiator=None):
__del(self, value, _sa_initiator, NO_KEY)
# testlib.pragma exempt:__eq__
fn(self, value)
_tidy(remove)
return remove
def insert(fn):
def insert(self, index, value):
value = __set(self, value, None, index)
fn(self, index, value)
_tidy(insert)
return insert
def __setitem__(fn):
def __setitem__(self, index, value):
if not isinstance(index, slice):
existing = self[index]
if existing is not None:
__del(self, existing, None, index)
value = __set(self, value, None, index)
fn(self, index, value)
else:
# slice assignment requires __delitem__, insert, __len__
step = index.step or 1
start = index.start or 0
if start < 0:
start += len(self)
if index.stop is not None:
stop = index.stop
else:
stop = len(self)
if stop < 0:
stop += len(self)
if step == 1:
if value is self:
return
for i in range(start, stop, step):
if len(self) > start:
del self[start]
for i, item in enumerate(value):
self.insert(i + start, item)
else:
rng = list(range(start, stop, step))
if len(value) != len(rng):
raise ValueError(
"attempt to assign sequence of size %s to "
"extended slice of size %s"
% (len(value), len(rng))
)
for i, item in zip(rng, value):
self.__setitem__(i, item)
_tidy(__setitem__)
return __setitem__
def __delitem__(fn):
def __delitem__(self, index):
if not isinstance(index, slice):
item = self[index]
__del(self, item, None, index)
fn(self, index)
else:
# slice deletion requires __getslice__ and a slice-groking
# __getitem__ for stepped deletion
# note: not breaking this into atomic dels
for item in self[index]:
__del(self, item, None, index)
fn(self, index)
_tidy(__delitem__)
return __delitem__
def extend(fn):
def extend(self, iterable):
for value in list(iterable):
self.append(value)
_tidy(extend)
return extend
def __iadd__(fn):
def __iadd__(self, iterable):
# list.__iadd__ takes any iterable and seems to let TypeError
# raise as-is instead of returning NotImplemented
for value in list(iterable):
self.append(value)
return self
_tidy(__iadd__)
return __iadd__
def pop(fn):
def pop(self, index=-1):
__before_pop(self)
item = fn(self, index)
__del(self, item, None, index)
return item
_tidy(pop)
return pop
def clear(fn):
def clear(self, index=-1):
for item in self:
__del(self, item, None, index)
fn(self)
_tidy(clear)
return clear
# __imul__ : not wrapping this. all members of the collection are already
# present, so no need to fire appends... wrapping it with an explicit
# decorator is still possible, so events on *= can be had if they're
# desired. hard to imagine a use case for __imul__, though.
l = locals().copy()
l.pop("_tidy")
return l
def _dict_decorators() -> Dict[str, Callable[[_FN], _FN]]:
"""Tailored instrumentation wrappers for any dict-like mapping class."""
def _tidy(fn):
fn._sa_instrumented = True
fn.__doc__ = getattr(dict, fn.__name__).__doc__
def __setitem__(fn):
def __setitem__(self, key, value, _sa_initiator=None):
if key in self:
__del(self, self[key], _sa_initiator, key)
value = __set(self, value, _sa_initiator, key)
fn(self, key, value)
_tidy(__setitem__)
return __setitem__
def __delitem__(fn):
def __delitem__(self, key, _sa_initiator=None):
if key in self:
__del(self, self[key], _sa_initiator, key)
fn(self, key)
_tidy(__delitem__)
return __delitem__
def clear(fn):
def clear(self):
for key in self:
__del(self, self[key], None, key)
fn(self)
_tidy(clear)
return clear
def pop(fn):
def pop(self, key, default=NO_ARG):
__before_pop(self)
_to_del = key in self
if default is NO_ARG:
item = fn(self, key)
else:
item = fn(self, key, default)
if _to_del:
__del(self, item, None, key)
return item
_tidy(pop)
return pop
def popitem(fn):
def popitem(self):
__before_pop(self)
item = fn(self)
__del(self, item[1], None, 1)
return item
_tidy(popitem)
return popitem
def setdefault(fn):
def setdefault(self, key, default=None):
if key not in self:
self.__setitem__(key, default)
return default
else:
value = self.__getitem__(key)
if value is default:
__set_wo_mutation(self, value, None)
return value
_tidy(setdefault)
return setdefault
def update(fn):
def update(self, __other=NO_ARG, **kw):
if __other is not NO_ARG:
if hasattr(__other, "keys"):
for key in list(__other):
if key not in self or self[key] is not __other[key]:
self[key] = __other[key]
else:
__set_wo_mutation(self, __other[key], None)
else:
for key, value in __other:
if key not in self or self[key] is not value:
self[key] = value
else:
__set_wo_mutation(self, value, None)
for key in kw:
if key not in self or self[key] is not kw[key]:
self[key] = kw[key]
else:
__set_wo_mutation(self, kw[key], None)
_tidy(update)
return update
l = locals().copy()
l.pop("_tidy")
return l
_set_binop_bases = (set, frozenset)
def _set_binops_check_strict(self: Any, obj: Any) -> bool:
"""Allow only set, frozenset and self.__class__-derived
objects in binops."""
return isinstance(obj, _set_binop_bases + (self.__class__,))
def _set_binops_check_loose(self: Any, obj: Any) -> bool:
"""Allow anything set-like to participate in set binops."""
return (
isinstance(obj, _set_binop_bases + (self.__class__,))
or util.duck_type_collection(obj) == set
)
def _set_decorators() -> Dict[str, Callable[[_FN], _FN]]:
"""Tailored instrumentation wrappers for any set-like class."""
def _tidy(fn):
fn._sa_instrumented = True
fn.__doc__ = getattr(set, fn.__name__).__doc__
def add(fn):
def add(self, value, _sa_initiator=None):
if value not in self:
value = __set(self, value, _sa_initiator, NO_KEY)
else:
__set_wo_mutation(self, value, _sa_initiator)
# testlib.pragma exempt:__hash__
fn(self, value)
_tidy(add)
return add
def discard(fn):
def discard(self, value, _sa_initiator=None):
# testlib.pragma exempt:__hash__
if value in self:
__del(self, value, _sa_initiator, NO_KEY)
# testlib.pragma exempt:__hash__
fn(self, value)
_tidy(discard)
return discard
def remove(fn):
def remove(self, value, _sa_initiator=None):
# testlib.pragma exempt:__hash__
if value in self:
__del(self, value, _sa_initiator, NO_KEY)
# testlib.pragma exempt:__hash__
fn(self, value)
_tidy(remove)
return remove
def pop(fn):
def pop(self):
__before_pop(self)
item = fn(self)
# for set in particular, we have no way to access the item
# that will be popped before pop is called.
__del(self, item, None, NO_KEY)
return item
_tidy(pop)
return pop
def clear(fn):
def clear(self):
for item in list(self):
self.remove(item)
_tidy(clear)
return clear
def update(fn):
def update(self, value):
for item in value:
self.add(item)
_tidy(update)
return update
def __ior__(fn):
def __ior__(self, value):
if not _set_binops_check_strict(self, value):
return NotImplemented
for item in value:
self.add(item)
return self
_tidy(__ior__)
return __ior__
def difference_update(fn):
def difference_update(self, value):
for item in value:
self.discard(item)
_tidy(difference_update)
return difference_update
def __isub__(fn):
def __isub__(self, value):
if not _set_binops_check_strict(self, value):
return NotImplemented
for item in value:
self.discard(item)
return self
_tidy(__isub__)
return __isub__
def intersection_update(fn):
def intersection_update(self, other):
want, have = self.intersection(other), set(self)
remove, add = have - want, want - have
for item in remove:
self.remove(item)
for item in add:
self.add(item)
_tidy(intersection_update)
return intersection_update
def __iand__(fn):
def __iand__(self, other):
if not _set_binops_check_strict(self, other):
return NotImplemented
want, have = self.intersection(other), set(self)
remove, add = have - want, want - have
for item in remove:
self.remove(item)
for item in add:
self.add(item)
return self
_tidy(__iand__)
return __iand__
def symmetric_difference_update(fn):
def symmetric_difference_update(self, other):
want, have = self.symmetric_difference(other), set(self)
remove, add = have - want, want - have
for item in remove:
self.remove(item)
for item in add:
self.add(item)
_tidy(symmetric_difference_update)
return symmetric_difference_update
def __ixor__(fn):
def __ixor__(self, other):
if not _set_binops_check_strict(self, other):
return NotImplemented
want, have = self.symmetric_difference(other), set(self)
remove, add = have - want, want - have
for item in remove:
self.remove(item)
for item in add:
self.add(item)
return self
_tidy(__ixor__)
return __ixor__
l = locals().copy()
l.pop("_tidy")
return l
class InstrumentedList(List[_T]):
"""An instrumented version of the built-in list."""
class InstrumentedSet(Set[_T]):
"""An instrumented version of the built-in set."""
class InstrumentedDict(Dict[_KT, _VT]):
"""An instrumented version of the built-in dict."""
__canned_instrumentation: util.immutabledict[Any, _CollectionFactoryType] = (
util.immutabledict(
{
list: InstrumentedList,
set: InstrumentedSet,
dict: InstrumentedDict,
}
)
)
__interfaces: util.immutabledict[
Any,
Tuple[
Dict[str, str],
Dict[str, Callable[..., Any]],
],
] = util.immutabledict(
{
list: (
{
"appender": "append",
"remover": "remove",
"iterator": "__iter__",
},
_list_decorators(),
),
set: (
{"appender": "add", "remover": "remove", "iterator": "__iter__"},
_set_decorators(),
),
# decorators are required for dicts and object collections.
dict: ({"iterator": "values"}, _dict_decorators()),
}
)
def __go(lcls):
global keyfunc_mapping, mapped_collection
global column_keyed_dict, column_mapped_collection
global MappedCollection, KeyFuncDict
global attribute_keyed_dict, attribute_mapped_collection
from .mapped_collection import keyfunc_mapping
from .mapped_collection import column_keyed_dict
from .mapped_collection import attribute_keyed_dict
from .mapped_collection import KeyFuncDict
from .mapped_collection import mapped_collection
from .mapped_collection import column_mapped_collection
from .mapped_collection import attribute_mapped_collection
from .mapped_collection import MappedCollection
# ensure instrumentation is associated with
# these built-in classes; if a user-defined class
# subclasses these and uses @internally_instrumented,
# the superclass is otherwise not instrumented.
# see [ticket:2406].
_instrument_class(InstrumentedList)
_instrument_class(InstrumentedSet)
_instrument_class(KeyFuncDict)
__go(locals())