Your IP : 3.138.67.56
from collections import defaultdict
import glob
import json
import os
import warnings
from .metrics import Gauge
from .metrics_core import Metric
from .mmap_dict import MmapedDict
from .samples import Sample
from .utils import floatToGoString
try: # Python3
FileNotFoundError
except NameError: # Python >= 2.5
FileNotFoundError = IOError
class MultiProcessCollector:
"""Collector for files for multi-process mode."""
def __init__(self, registry, path=None):
if path is None:
# This deprecation warning can go away in a few releases when removing the compatibility
if 'prometheus_multiproc_dir' in os.environ and 'PROMETHEUS_MULTIPROC_DIR' not in os.environ:
os.environ['PROMETHEUS_MULTIPROC_DIR'] = os.environ['prometheus_multiproc_dir']
warnings.warn("prometheus_multiproc_dir variable has been deprecated in favor of the upper case naming PROMETHEUS_MULTIPROC_DIR", DeprecationWarning)
path = os.environ.get('PROMETHEUS_MULTIPROC_DIR')
if not path or not os.path.isdir(path):
raise ValueError('env PROMETHEUS_MULTIPROC_DIR is not set or not a directory')
self._path = path
if registry:
registry.register(self)
@staticmethod
def merge(files, accumulate=True):
"""Merge metrics from given mmap files.
By default, histograms are accumulated, as per prometheus wire format.
But if writing the merged data back to mmap files, use
accumulate=False to avoid compound accumulation.
"""
metrics = MultiProcessCollector._read_metrics(files)
return MultiProcessCollector._accumulate_metrics(metrics, accumulate)
@staticmethod
def _read_metrics(files):
metrics = {}
key_cache = {}
def _parse_key(key):
val = key_cache.get(key)
if not val:
metric_name, name, labels, help_text = json.loads(key)
labels_key = tuple(sorted(labels.items()))
val = key_cache[key] = (metric_name, name, labels, labels_key, help_text)
return val
for f in files:
parts = os.path.basename(f).split('_')
typ = parts[0]
try:
file_values = MmapedDict.read_all_values_from_file(f)
except FileNotFoundError:
if typ == 'gauge' and parts[1].startswith('live'):
# Files for 'live*' gauges can be deleted between the glob of collect
# and now (via a mark_process_dead call) so don't fail if
# the file is missing
continue
raise
for key, value, timestamp, _ in file_values:
metric_name, name, labels, labels_key, help_text = _parse_key(key)
metric = metrics.get(metric_name)
if metric is None:
metric = Metric(metric_name, help_text, typ)
metrics[metric_name] = metric
if typ == 'gauge':
pid = parts[2][:-3]
metric._multiprocess_mode = parts[1]
metric.add_sample(name, labels_key + (('pid', pid),), value, timestamp)
else:
# The duplicates and labels are fixed in the next for.
metric.add_sample(name, labels_key, value)
return metrics
@staticmethod
def _accumulate_metrics(metrics, accumulate):
for metric in metrics.values():
samples = defaultdict(float)
sample_timestamps = defaultdict(float)
buckets = defaultdict(lambda: defaultdict(float))
samples_setdefault = samples.setdefault
for s in metric.samples:
name, labels, value, timestamp, exemplar = s
if metric.type == 'gauge':
without_pid_key = (name, tuple(l for l in labels if l[0] != 'pid'))
if metric._multiprocess_mode in ('min', 'livemin'):
current = samples_setdefault(without_pid_key, value)
if value < current:
samples[without_pid_key] = value
elif metric._multiprocess_mode in ('max', 'livemax'):
current = samples_setdefault(without_pid_key, value)
if value > current:
samples[without_pid_key] = value
elif metric._multiprocess_mode in ('sum', 'livesum'):
samples[without_pid_key] += value
elif metric._multiprocess_mode in ('mostrecent', 'livemostrecent'):
current_timestamp = sample_timestamps[without_pid_key]
timestamp = float(timestamp or 0)
if current_timestamp < timestamp:
samples[without_pid_key] = value
sample_timestamps[without_pid_key] = timestamp
else: # all/liveall
samples[(name, labels)] = value
elif metric.type == 'histogram':
# A for loop with early exit is faster than a genexpr
# or a listcomp that ends up building unnecessary things
for l in labels:
if l[0] == 'le':
bucket_value = float(l[1])
# _bucket
without_le = tuple(l for l in labels if l[0] != 'le')
buckets[without_le][bucket_value] += value
break
else: # did not find the `le` key
# _sum/_count
samples[(name, labels)] += value
else:
# Counter and Summary.
samples[(name, labels)] += value
# Accumulate bucket values.
if metric.type == 'histogram':
for labels, values in buckets.items():
acc = 0.0
for bucket, value in sorted(values.items()):
sample_key = (
metric.name + '_bucket',
labels + (('le', floatToGoString(bucket)),),
)
if accumulate:
acc += value
samples[sample_key] = acc
else:
samples[sample_key] = value
if accumulate:
samples[(metric.name + '_count', labels)] = acc
# Convert to correct sample format.
metric.samples = [Sample(name_, dict(labels), value) for (name_, labels), value in samples.items()]
return metrics.values()
def collect(self):
files = glob.glob(os.path.join(self._path, '*.db'))
return self.merge(files, accumulate=True)
_LIVE_GAUGE_MULTIPROCESS_MODES = {m for m in Gauge._MULTIPROC_MODES if m.startswith('live')}
def mark_process_dead(pid, path=None):
"""Do bookkeeping for when one process dies in a multi-process setup."""
if path is None:
path = os.environ.get('PROMETHEUS_MULTIPROC_DIR', os.environ.get('prometheus_multiproc_dir'))
for mode in _LIVE_GAUGE_MULTIPROCESS_MODES:
for f in glob.glob(os.path.join(path, f'gauge_{mode}_{pid}.db')):
os.remove(f)