Your IP : 3.142.197.111
import os
from threading import Lock
import time
import types
from typing import (
Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple,
Type, TypeVar, Union,
)
import warnings
from . import values # retain this import style for testability
from .context_managers import ExceptionCounter, InprogressTracker, Timer
from .metrics_core import (
Metric, METRIC_LABEL_NAME_RE, METRIC_NAME_RE,
RESERVED_METRIC_LABEL_NAME_RE,
)
from .registry import Collector, CollectorRegistry, REGISTRY
from .samples import Exemplar, Sample
from .utils import floatToGoString, INF
T = TypeVar('T', bound='MetricWrapperBase')
F = TypeVar("F", bound=Callable[..., Any])
def _build_full_name(metric_type, name, namespace, subsystem, unit):
full_name = ''
if namespace:
full_name += namespace + '_'
if subsystem:
full_name += subsystem + '_'
full_name += name
if metric_type == 'counter' and full_name.endswith('_total'):
full_name = full_name[:-6] # Munge to OpenMetrics.
if unit and not full_name.endswith("_" + unit):
full_name += "_" + unit
if unit and metric_type in ('info', 'stateset'):
raise ValueError('Metric name is of a type that cannot have a unit: ' + full_name)
return full_name
def _validate_labelname(l):
if not METRIC_LABEL_NAME_RE.match(l):
raise ValueError('Invalid label metric name: ' + l)
if RESERVED_METRIC_LABEL_NAME_RE.match(l):
raise ValueError('Reserved label metric name: ' + l)
def _validate_labelnames(cls, labelnames):
labelnames = tuple(labelnames)
for l in labelnames:
_validate_labelname(l)
if l in cls._reserved_labelnames:
raise ValueError('Reserved label metric name: ' + l)
return labelnames
def _validate_exemplar(exemplar):
runes = 0
for k, v in exemplar.items():
_validate_labelname(k)
runes += len(k)
runes += len(v)
if runes > 128:
raise ValueError('Exemplar labels have %d UTF-8 characters, exceeding the limit of 128')
def _get_use_created() -> bool:
return os.environ.get("PROMETHEUS_DISABLE_CREATED_SERIES", 'False').lower() not in ('true', '1', 't')
_use_created = _get_use_created()
def disable_created_metrics():
"""Disable exporting _created metrics on counters, histograms, and summaries."""
global _use_created
_use_created = False
def enable_created_metrics():
"""Enable exporting _created metrics on counters, histograms, and summaries."""
global _use_created
_use_created = True
class MetricWrapperBase(Collector):
_type: Optional[str] = None
_reserved_labelnames: Sequence[str] = ()
def _is_observable(self):
# Whether this metric is observable, i.e.
# * a metric without label names and values, or
# * the child of a labelled metric.
return not self._labelnames or (self._labelnames and self._labelvalues)
def _raise_if_not_observable(self):
# Functions that mutate the state of the metric, for example incrementing
# a counter, will fail if the metric is not observable, because only if a
# metric is observable will the value be initialized.
if not self._is_observable():
raise ValueError('%s metric is missing label values' % str(self._type))
def _is_parent(self):
return self._labelnames and not self._labelvalues
def _get_metric(self):
return Metric(self._name, self._documentation, self._type, self._unit)
def describe(self) -> Iterable[Metric]:
return [self._get_metric()]
def collect(self) -> Iterable[Metric]:
metric = self._get_metric()
for suffix, labels, value, timestamp, exemplar in self._samples():
metric.add_sample(self._name + suffix, labels, value, timestamp, exemplar)
return [metric]
def __str__(self) -> str:
return f"{self._type}:{self._name}"
def __repr__(self) -> str:
metric_type = type(self)
return f"{metric_type.__module__}.{metric_type.__name__}({self._name})"
def __init__(self: T,
name: str,
documentation: str,
labelnames: Iterable[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
) -> None:
self._name = _build_full_name(self._type, name, namespace, subsystem, unit)
self._labelnames = _validate_labelnames(self, labelnames)
self._labelvalues = tuple(_labelvalues or ())
self._kwargs: Dict[str, Any] = {}
self._documentation = documentation
self._unit = unit
if not METRIC_NAME_RE.match(self._name):
raise ValueError('Invalid metric name: ' + self._name)
if self._is_parent():
# Prepare the fields needed for child metrics.
self._lock = Lock()
self._metrics: Dict[Sequence[str], T] = {}
if self._is_observable():
self._metric_init()
if not self._labelvalues:
# Register the multi-wrapper parent metric, or if a label-less metric, the whole shebang.
if registry:
registry.register(self)
def labels(self: T, *labelvalues: Any, **labelkwargs: Any) -> T:
"""Return the child for the given labelset.
All metrics can have labels, allowing grouping of related time series.
Taking a counter as an example:
from prometheus_client import Counter
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
c.labels('get', '/').inc()
c.labels('post', '/submit').inc()
Labels can also be provided as keyword arguments:
from prometheus_client import Counter
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
c.labels(method='get', endpoint='/').inc()
c.labels(method='post', endpoint='/submit').inc()
See the best practices on [naming](http://prometheus.io/docs/practices/naming/)
and [labels](http://prometheus.io/docs/practices/instrumentation/#use-labels).
"""
if not self._labelnames:
raise ValueError('No label names were set when constructing %s' % self)
if self._labelvalues:
raise ValueError('{} already has labels set ({}); can not chain calls to .labels()'.format(
self,
dict(zip(self._labelnames, self._labelvalues))
))
if labelvalues and labelkwargs:
raise ValueError("Can't pass both *args and **kwargs")
if labelkwargs:
if sorted(labelkwargs) != sorted(self._labelnames):
raise ValueError('Incorrect label names')
labelvalues = tuple(str(labelkwargs[l]) for l in self._labelnames)
else:
if len(labelvalues) != len(self._labelnames):
raise ValueError('Incorrect label count')
labelvalues = tuple(str(l) for l in labelvalues)
with self._lock:
if labelvalues not in self._metrics:
self._metrics[labelvalues] = self.__class__(
self._name,
documentation=self._documentation,
labelnames=self._labelnames,
unit=self._unit,
_labelvalues=labelvalues,
**self._kwargs
)
return self._metrics[labelvalues]
def remove(self, *labelvalues: Any) -> None:
if 'prometheus_multiproc_dir' in os.environ or 'PROMETHEUS_MULTIPROC_DIR' in os.environ:
warnings.warn(
"Removal of labels has not been implemented in multi-process mode yet.",
UserWarning)
if not self._labelnames:
raise ValueError('No label names were set when constructing %s' % self)
"""Remove the given labelset from the metric."""
if len(labelvalues) != len(self._labelnames):
raise ValueError('Incorrect label count (expected %d, got %s)' % (len(self._labelnames), labelvalues))
labelvalues = tuple(str(l) for l in labelvalues)
with self._lock:
del self._metrics[labelvalues]
def clear(self) -> None:
"""Remove all labelsets from the metric"""
if 'prometheus_multiproc_dir' in os.environ or 'PROMETHEUS_MULTIPROC_DIR' in os.environ:
warnings.warn(
"Clearing labels has not been implemented in multi-process mode yet",
UserWarning)
with self._lock:
self._metrics = {}
def _samples(self) -> Iterable[Sample]:
if self._is_parent():
return self._multi_samples()
else:
return self._child_samples()
def _multi_samples(self) -> Iterable[Sample]:
with self._lock:
metrics = self._metrics.copy()
for labels, metric in metrics.items():
series_labels = list(zip(self._labelnames, labels))
for suffix, sample_labels, value, timestamp, exemplar in metric._samples():
yield Sample(suffix, dict(series_labels + list(sample_labels.items())), value, timestamp, exemplar)
def _child_samples(self) -> Iterable[Sample]: # pragma: no cover
raise NotImplementedError('_child_samples() must be implemented by %r' % self)
def _metric_init(self): # pragma: no cover
"""
Initialize the metric object as a child, i.e. when it has labels (if any) set.
This is factored as a separate function to allow for deferred initialization.
"""
raise NotImplementedError('_metric_init() must be implemented by %r' % self)
class Counter(MetricWrapperBase):
"""A Counter tracks counts of events or running totals.
Example use cases for Counters:
- Number of requests processed
- Number of items that were inserted into a queue
- Total amount of data that a system has processed
Counters can only go up (and be reset when the process restarts). If your use case can go down,
you should use a Gauge instead.
An example for a Counter:
from prometheus_client import Counter
c = Counter('my_failures_total', 'Description of counter')
c.inc() # Increment by 1
c.inc(1.6) # Increment by given value
There are utilities to count exceptions raised:
@c.count_exceptions()
def f():
pass
with c.count_exceptions():
pass
# Count only one type of exception
with c.count_exceptions(ValueError):
pass
You can also reset the counter to zero in case your logical "process" restarts
without restarting the actual python process.
c.reset()
"""
_type = 'counter'
def _metric_init(self) -> None:
self._value = values.ValueClass(self._type, self._name, self._name + '_total', self._labelnames,
self._labelvalues, self._documentation)
self._created = time.time()
def inc(self, amount: float = 1, exemplar: Optional[Dict[str, str]] = None) -> None:
"""Increment counter by the given amount."""
self._raise_if_not_observable()
if amount < 0:
raise ValueError('Counters can only be incremented by non-negative amounts.')
self._value.inc(amount)
if exemplar:
_validate_exemplar(exemplar)
self._value.set_exemplar(Exemplar(exemplar, amount, time.time()))
def reset(self) -> None:
"""Reset the counter to zero. Use this when a logical process restarts without restarting the actual python process."""
self._value.set(0)
self._created = time.time()
def count_exceptions(self, exception: Union[Type[BaseException], Tuple[Type[BaseException], ...]] = Exception) -> ExceptionCounter:
"""Count exceptions in a block of code or function.
Can be used as a function decorator or context manager.
Increments the counter when an exception of the given
type is raised up out of the code.
"""
self._raise_if_not_observable()
return ExceptionCounter(self, exception)
def _child_samples(self) -> Iterable[Sample]:
sample = Sample('_total', {}, self._value.get(), None, self._value.get_exemplar())
if _use_created:
return (
sample,
Sample('_created', {}, self._created, None, None)
)
return (sample,)
class Gauge(MetricWrapperBase):
"""Gauge metric, to report instantaneous values.
Examples of Gauges include:
- Inprogress requests
- Number of items in a queue
- Free memory
- Total memory
- Temperature
Gauges can go both up and down.
from prometheus_client import Gauge
g = Gauge('my_inprogress_requests', 'Description of gauge')
g.inc() # Increment by 1
g.dec(10) # Decrement by given value
g.set(4.2) # Set to a given value
There are utilities for common use cases:
g.set_to_current_time() # Set to current unixtime
# Increment when entered, decrement when exited.
@g.track_inprogress()
def f():
pass
with g.track_inprogress():
pass
A Gauge can also take its value from a callback:
d = Gauge('data_objects', 'Number of objects')
my_dict = {}
d.set_function(lambda: len(my_dict))
"""
_type = 'gauge'
_MULTIPROC_MODES = frozenset(('all', 'liveall', 'min', 'livemin', 'max', 'livemax', 'sum', 'livesum', 'mostrecent', 'livemostrecent'))
_MOST_RECENT_MODES = frozenset(('mostrecent', 'livemostrecent'))
def __init__(self,
name: str,
documentation: str,
labelnames: Iterable[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
multiprocess_mode: Literal['all', 'liveall', 'min', 'livemin', 'max', 'livemax', 'sum', 'livesum', 'mostrecent', 'livemostrecent'] = 'all',
):
self._multiprocess_mode = multiprocess_mode
if multiprocess_mode not in self._MULTIPROC_MODES:
raise ValueError('Invalid multiprocess mode: ' + multiprocess_mode)
super().__init__(
name=name,
documentation=documentation,
labelnames=labelnames,
namespace=namespace,
subsystem=subsystem,
unit=unit,
registry=registry,
_labelvalues=_labelvalues,
)
self._kwargs['multiprocess_mode'] = self._multiprocess_mode
self._is_most_recent = self._multiprocess_mode in self._MOST_RECENT_MODES
def _metric_init(self) -> None:
self._value = values.ValueClass(
self._type, self._name, self._name, self._labelnames, self._labelvalues,
self._documentation, multiprocess_mode=self._multiprocess_mode
)
def inc(self, amount: float = 1) -> None:
"""Increment gauge by the given amount."""
if self._is_most_recent:
raise RuntimeError("inc must not be used with the mostrecent mode")
self._raise_if_not_observable()
self._value.inc(amount)
def dec(self, amount: float = 1) -> None:
"""Decrement gauge by the given amount."""
if self._is_most_recent:
raise RuntimeError("dec must not be used with the mostrecent mode")
self._raise_if_not_observable()
self._value.inc(-amount)
def set(self, value: float) -> None:
"""Set gauge to the given value."""
self._raise_if_not_observable()
if self._is_most_recent:
self._value.set(float(value), timestamp=time.time())
else:
self._value.set(float(value))
def set_to_current_time(self) -> None:
"""Set gauge to the current unixtime."""
self.set(time.time())
def track_inprogress(self) -> InprogressTracker:
"""Track inprogress blocks of code or functions.
Can be used as a function decorator or context manager.
Increments the gauge when the code is entered,
and decrements when it is exited.
"""
self._raise_if_not_observable()
return InprogressTracker(self)
def time(self) -> Timer:
"""Time a block of code or function, and set the duration in seconds.
Can be used as a function decorator or context manager.
"""
return Timer(self, 'set')
def set_function(self, f: Callable[[], float]) -> None:
"""Call the provided function to return the Gauge value.
The function must return a float, and may be called from
multiple threads. All other methods of the Gauge become NOOPs.
"""
self._raise_if_not_observable()
def samples(_: Gauge) -> Iterable[Sample]:
return (Sample('', {}, float(f()), None, None),)
self._child_samples = types.MethodType(samples, self) # type: ignore
def _child_samples(self) -> Iterable[Sample]:
return (Sample('', {}, self._value.get(), None, None),)
class Summary(MetricWrapperBase):
"""A Summary tracks the size and number of events.
Example use cases for Summaries:
- Response latency
- Request size
Example for a Summary:
from prometheus_client import Summary
s = Summary('request_size_bytes', 'Request size (bytes)')
s.observe(512) # Observe 512 (bytes)
Example for a Summary using time:
from prometheus_client import Summary
REQUEST_TIME = Summary('response_latency_seconds', 'Response latency (seconds)')
@REQUEST_TIME.time()
def create_response(request):
'''A dummy function'''
time.sleep(1)
Example for using the same Summary object as a context manager:
with REQUEST_TIME.time():
pass # Logic to be timed
"""
_type = 'summary'
_reserved_labelnames = ['quantile']
def _metric_init(self) -> None:
self._count = values.ValueClass(self._type, self._name, self._name + '_count', self._labelnames,
self._labelvalues, self._documentation)
self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues, self._documentation)
self._created = time.time()
def observe(self, amount: float) -> None:
"""Observe the given amount.
The amount is usually positive or zero. Negative values are
accepted but prevent current versions of Prometheus from
properly detecting counter resets in the sum of
observations. See
https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
for details.
"""
self._raise_if_not_observable()
self._count.inc(1)
self._sum.inc(amount)
def time(self) -> Timer:
"""Time a block of code or function, and observe the duration in seconds.
Can be used as a function decorator or context manager.
"""
return Timer(self, 'observe')
def _child_samples(self) -> Iterable[Sample]:
samples = [
Sample('_count', {}, self._count.get(), None, None),
Sample('_sum', {}, self._sum.get(), None, None),
]
if _use_created:
samples.append(Sample('_created', {}, self._created, None, None))
return tuple(samples)
class Histogram(MetricWrapperBase):
"""A Histogram tracks the size and number of events in buckets.
You can use Histograms for aggregatable calculation of quantiles.
Example use cases:
- Response latency
- Request size
Example for a Histogram:
from prometheus_client import Histogram
h = Histogram('request_size_bytes', 'Request size (bytes)')
h.observe(512) # Observe 512 (bytes)
Example for a Histogram using time:
from prometheus_client import Histogram
REQUEST_TIME = Histogram('response_latency_seconds', 'Response latency (seconds)')
@REQUEST_TIME.time()
def create_response(request):
'''A dummy function'''
time.sleep(1)
Example of using the same Histogram object as a context manager:
with REQUEST_TIME.time():
pass # Logic to be timed
The default buckets are intended to cover a typical web/rpc request from milliseconds to seconds.
They can be overridden by passing `buckets` keyword argument to `Histogram`.
"""
_type = 'histogram'
_reserved_labelnames = ['le']
DEFAULT_BUCKETS = (.005, .01, .025, .05, .075, .1, .25, .5, .75, 1.0, 2.5, 5.0, 7.5, 10.0, INF)
def __init__(self,
name: str,
documentation: str,
labelnames: Iterable[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
buckets: Sequence[Union[float, str]] = DEFAULT_BUCKETS,
):
self._prepare_buckets(buckets)
super().__init__(
name=name,
documentation=documentation,
labelnames=labelnames,
namespace=namespace,
subsystem=subsystem,
unit=unit,
registry=registry,
_labelvalues=_labelvalues,
)
self._kwargs['buckets'] = buckets
def _prepare_buckets(self, source_buckets: Sequence[Union[float, str]]) -> None:
buckets = [float(b) for b in source_buckets]
if buckets != sorted(buckets):
# This is probably an error on the part of the user,
# so raise rather than sorting for them.
raise ValueError('Buckets not in sorted order')
if buckets and buckets[-1] != INF:
buckets.append(INF)
if len(buckets) < 2:
raise ValueError('Must have at least two buckets')
self._upper_bounds = buckets
def _metric_init(self) -> None:
self._buckets: List[values.ValueClass] = []
self._created = time.time()
bucket_labelnames = self._labelnames + ('le',)
self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues, self._documentation)
for b in self._upper_bounds:
self._buckets.append(values.ValueClass(
self._type,
self._name,
self._name + '_bucket',
bucket_labelnames,
self._labelvalues + (floatToGoString(b),),
self._documentation)
)
def observe(self, amount: float, exemplar: Optional[Dict[str, str]] = None) -> None:
"""Observe the given amount.
The amount is usually positive or zero. Negative values are
accepted but prevent current versions of Prometheus from
properly detecting counter resets in the sum of
observations. See
https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
for details.
"""
self._raise_if_not_observable()
self._sum.inc(amount)
for i, bound in enumerate(self._upper_bounds):
if amount <= bound:
self._buckets[i].inc(1)
if exemplar:
_validate_exemplar(exemplar)
self._buckets[i].set_exemplar(Exemplar(exemplar, amount, time.time()))
break
def time(self) -> Timer:
"""Time a block of code or function, and observe the duration in seconds.
Can be used as a function decorator or context manager.
"""
return Timer(self, 'observe')
def _child_samples(self) -> Iterable[Sample]:
samples = []
acc = 0.0
for i, bound in enumerate(self._upper_bounds):
acc += self._buckets[i].get()
samples.append(Sample('_bucket', {'le': floatToGoString(bound)}, acc, None, self._buckets[i].get_exemplar()))
samples.append(Sample('_count', {}, acc, None, None))
if self._upper_bounds[0] >= 0:
samples.append(Sample('_sum', {}, self._sum.get(), None, None))
if _use_created:
samples.append(Sample('_created', {}, self._created, None, None))
return tuple(samples)
class Info(MetricWrapperBase):
"""Info metric, key-value pairs.
Examples of Info include:
- Build information
- Version information
- Potential target metadata
Example usage:
from prometheus_client import Info
i = Info('my_build', 'Description of info')
i.info({'version': '1.2.3', 'buildhost': 'foo@bar'})
Info metrics do not work in multiprocess mode.
"""
_type = 'info'
def _metric_init(self):
self._labelname_set = set(self._labelnames)
self._lock = Lock()
self._value = {}
def info(self, val: Dict[str, str]) -> None:
"""Set info metric."""
if self._labelname_set.intersection(val.keys()):
raise ValueError('Overlapping labels for Info metric, metric: {} child: {}'.format(
self._labelnames, val))
with self._lock:
self._value = dict(val)
def _child_samples(self) -> Iterable[Sample]:
with self._lock:
return (Sample('_info', self._value, 1.0, None, None),)
class Enum(MetricWrapperBase):
"""Enum metric, which of a set of states is true.
Example usage:
from prometheus_client import Enum
e = Enum('task_state', 'Description of enum',
states=['starting', 'running', 'stopped'])
e.state('running')
The first listed state will be the default.
Enum metrics do not work in multiprocess mode.
"""
_type = 'stateset'
def __init__(self,
name: str,
documentation: str,
labelnames: Sequence[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
states: Optional[Sequence[str]] = None,
):
super().__init__(
name=name,
documentation=documentation,
labelnames=labelnames,
namespace=namespace,
subsystem=subsystem,
unit=unit,
registry=registry,
_labelvalues=_labelvalues,
)
if name in labelnames:
raise ValueError(f'Overlapping labels for Enum metric: {name}')
if not states:
raise ValueError(f'No states provided for Enum metric: {name}')
self._kwargs['states'] = self._states = states
def _metric_init(self) -> None:
self._value = 0
self._lock = Lock()
def state(self, state: str) -> None:
"""Set enum metric state."""
self._raise_if_not_observable()
with self._lock:
self._value = self._states.index(state)
def _child_samples(self) -> Iterable[Sample]:
with self._lock:
return [
Sample('', {self._name: s}, 1 if i == self._value else 0, None, None)
for i, s
in enumerate(self._states)
]