Your IP : 13.58.211.135
from functools import wraps
from sentry_sdk import consts
from sentry_sdk.ai.monitoring import record_token_usage
from sentry_sdk.ai.utils import set_data_normalized
from sentry_sdk.consts import SPANDATA
from typing import Any, Iterable, Callable
import sentry_sdk
from sentry_sdk.scope import should_send_default_pii
from sentry_sdk.integrations import DidNotEnable, Integration
from sentry_sdk.utils import (
capture_internal_exceptions,
event_from_exception,
)
try:
import huggingface_hub.inference._client
from huggingface_hub import ChatCompletionStreamOutput, TextGenerationOutput
except ImportError:
raise DidNotEnable("Huggingface not installed")
class HuggingfaceHubIntegration(Integration):
identifier = "huggingface_hub"
origin = f"auto.ai.{identifier}"
def __init__(self, include_prompts=True):
# type: (HuggingfaceHubIntegration, bool) -> None
self.include_prompts = include_prompts
@staticmethod
def setup_once():
# type: () -> None
huggingface_hub.inference._client.InferenceClient.text_generation = (
_wrap_text_generation(
huggingface_hub.inference._client.InferenceClient.text_generation
)
)
def _capture_exception(exc):
# type: (Any) -> None
event, hint = event_from_exception(
exc,
client_options=sentry_sdk.get_client().options,
mechanism={"type": "huggingface_hub", "handled": False},
)
sentry_sdk.capture_event(event, hint=hint)
def _wrap_text_generation(f):
# type: (Callable[..., Any]) -> Callable[..., Any]
@wraps(f)
def new_text_generation(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(HuggingfaceHubIntegration)
if integration is None:
return f(*args, **kwargs)
if "prompt" in kwargs:
prompt = kwargs["prompt"]
elif len(args) >= 2:
kwargs["prompt"] = args[1]
prompt = kwargs["prompt"]
args = (args[0],) + args[2:]
else:
# invalid call, let it return error
return f(*args, **kwargs)
model = kwargs.get("model")
streaming = kwargs.get("stream")
span = sentry_sdk.start_span(
op=consts.OP.HUGGINGFACE_HUB_CHAT_COMPLETIONS_CREATE,
name="Text Generation",
origin=HuggingfaceHubIntegration.origin,
)
span.__enter__()
try:
res = f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
span.__exit__(None, None, None)
raise e from None
with capture_internal_exceptions():
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, prompt)
set_data_normalized(span, SPANDATA.AI_MODEL_ID, model)
set_data_normalized(span, SPANDATA.AI_STREAMING, streaming)
if isinstance(res, str):
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span,
"ai.responses",
[res],
)
span.__exit__(None, None, None)
return res
if isinstance(res, TextGenerationOutput):
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span,
"ai.responses",
[res.generated_text],
)
if res.details is not None and res.details.generated_tokens > 0:
record_token_usage(span, total_tokens=res.details.generated_tokens)
span.__exit__(None, None, None)
return res
if not isinstance(res, Iterable):
# we only know how to deal with strings and iterables, ignore
set_data_normalized(span, "unknown_response", True)
span.__exit__(None, None, None)
return res
if kwargs.get("details", False):
# res is Iterable[TextGenerationStreamOutput]
def new_details_iterator():
# type: () -> Iterable[ChatCompletionStreamOutput]
with capture_internal_exceptions():
tokens_used = 0
data_buf: list[str] = []
for x in res:
if hasattr(x, "token") and hasattr(x.token, "text"):
data_buf.append(x.token.text)
if hasattr(x, "details") and hasattr(
x.details, "generated_tokens"
):
tokens_used = x.details.generated_tokens
yield x
if (
len(data_buf) > 0
and should_send_default_pii()
and integration.include_prompts
):
set_data_normalized(
span, SPANDATA.AI_RESPONSES, "".join(data_buf)
)
if tokens_used > 0:
record_token_usage(span, total_tokens=tokens_used)
span.__exit__(None, None, None)
return new_details_iterator()
else:
# res is Iterable[str]
def new_iterator():
# type: () -> Iterable[str]
data_buf: list[str] = []
with capture_internal_exceptions():
for s in res:
if isinstance(s, str):
data_buf.append(s)
yield s
if (
len(data_buf) > 0
and should_send_default_pii()
and integration.include_prompts
):
set_data_normalized(
span, SPANDATA.AI_RESPONSES, "".join(data_buf)
)
span.__exit__(None, None, None)
return new_iterator()
return new_text_generation