Your IP : 52.14.176.111
Metadata-Version: 2.1
Name: snowballstemmer
Version: 2.2.0
Summary: This package provides 29 stemmers for 28 languages generated from Snowball algorithms.
Home-page: https://github.com/snowballstem/snowball
Author: Snowball Developers
Author-email: snowball-discuss@lists.tartarus.org
License: BSD-3-Clause
Keywords: stemmer
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Natural Language :: Arabic
Classifier: Natural Language :: Basque
Classifier: Natural Language :: Catalan
Classifier: Natural Language :: Danish
Classifier: Natural Language :: Dutch
Classifier: Natural Language :: English
Classifier: Natural Language :: Finnish
Classifier: Natural Language :: French
Classifier: Natural Language :: German
Classifier: Natural Language :: Greek
Classifier: Natural Language :: Hindi
Classifier: Natural Language :: Hungarian
Classifier: Natural Language :: Indonesian
Classifier: Natural Language :: Irish
Classifier: Natural Language :: Italian
Classifier: Natural Language :: Lithuanian
Classifier: Natural Language :: Nepali
Classifier: Natural Language :: Norwegian
Classifier: Natural Language :: Portuguese
Classifier: Natural Language :: Romanian
Classifier: Natural Language :: Russian
Classifier: Natural Language :: Serbian
Classifier: Natural Language :: Spanish
Classifier: Natural Language :: Swedish
Classifier: Natural Language :: Tamil
Classifier: Natural Language :: Turkish
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Database
Classifier: Topic :: Internet :: WWW/HTTP :: Indexing/Search
Classifier: Topic :: Text Processing :: Indexing
Classifier: Topic :: Text Processing :: Linguistic
Description-Content-Type: text/x-rst
License-File: COPYING
Snowball stemming library collection for Python
===============================================
Python 3 (>= 3.3) is supported. We no longer actively support Python 2 as
the Python developers stopped supporting it at the start of 2020. Snowball
2.1.0 was the last release to officially support Python 2.
What is Stemming?
-----------------
Stemming maps different forms of the same word to a common "stem" - for
example, the English stemmer maps *connection*, *connections*, *connective*,
*connected*, and *connecting* to *connect*. So a searching for *connected*
would also find documents which only have the other forms.
This stem form is often a word itself, but this is not always the case as this
is not a requirement for text search systems, which are the intended field of
use. We also aim to conflate words with the same meaning, rather than all
words with a common linguistic root (so *awe* and *awful* don't have the same
stem), and over-stemming is more problematic than under-stemming so we tend not
to stem in cases that are hard to resolve. If you want to always reduce words
to a root form and/or get a root form which is itself a word then Snowball's
stemming algorithms likely aren't the right answer.
How to use library
------------------
The ``snowballstemmer`` module has two functions.
The ``snowballstemmer.algorithms`` function returns a list of available
algorithm names.
The ``snowballstemmer.stemmer`` function takes an algorithm name and returns a
``Stemmer`` object.
``Stemmer`` objects have a ``Stemmer.stemWord(word)`` method and a
``Stemmer.stemWords(word[])`` method.
.. code-block:: python
import snowballstemmer
stemmer = snowballstemmer.stemmer('english');
print(stemmer.stemWords("We are the world".split()));
Automatic Acceleration
----------------------
`PyStemmer <https://pypi.org/project/PyStemmer/>`_ is a wrapper module for
Snowball's ``libstemmer_c`` and should provide results 100% compatible to
**snowballstemmer**.
**PyStemmer** is faster because it wraps generated C versions of the stemmers;
**snowballstemmer** uses generate Python code and is slower but offers a pure
Python solution.
If PyStemmer is installed, ``snowballstemmer.stemmer`` returns a ``PyStemmer``
``Stemmer`` object which provides the same ``Stemmer.stemWord()`` and
``Stemmer.stemWords()`` methods.
Benchmark
~~~~~~~~~
This is a crude benchmark which measures the time for running each stemmer on
every word in its sample vocabulary (10,787,583 words over 26 languages). It's
not a realistic test of normal use as a real application would do much more
than just stemming. It's also skewed towards the stemmers which do more work
per word and towards those with larger sample vocabularies.
* Python 2.7 + **snowballstemmer** : 13m00s (15.0 * PyStemmer)
* Python 3.7 + **snowballstemmer** : 12m19s (14.2 * PyStemmer)
* PyPy 7.1.1 (Python 2.7.13) + **snowballstemmer** : 2m14s (2.6 * PyStemmer)
* PyPy 7.1.1 (Python 3.6.1) + **snowballstemmer** : 1m46s (2.0 * PyStemmer)
* Python 2.7 + **PyStemmer** : 52s
For reference the equivalent test for C runs in 9 seconds.
These results are for Snowball 2.0.0. They're likely to evolve over time as
the code Snowball generates for both Python and C continues to improve (for
a much older test over a different set of stemmers using Python 2.7,
**snowballstemmer** was 30 times slower than **PyStemmer**, or 9 times slower
with **PyPy**).
The message to take away is that if you're stemming a lot of words you should
either install **PyStemmer** (which **snowballstemmer** will then automatically
use for you as described above) or use PyPy.
The TestApp example
-------------------
The ``testapp.py`` example program allows you to run any of the stemmers
on a sample vocabulary.
Usage::
testapp.py <algorithm> "sentences ... "
.. code-block:: bash
$ python testapp.py English "sentences... "