Your IP : 3.139.67.67
import math
import warnings
from collections import Counter, defaultdict, deque, abc
from collections.abc import Sequence
from functools import cached_property, partial, reduce, wraps
from heapq import heapify, heapreplace, heappop
from itertools import (
chain,
combinations,
compress,
count,
cycle,
dropwhile,
groupby,
islice,
repeat,
starmap,
takewhile,
tee,
zip_longest,
product,
)
from math import comb, e, exp, factorial, floor, fsum, log, perm, tau
from queue import Empty, Queue
from random import random, randrange, uniform
from operator import itemgetter, mul, sub, gt, lt, ge, le
from sys import hexversion, maxsize
from time import monotonic
from .recipes import (
_marker,
_zip_equal,
UnequalIterablesError,
consume,
flatten,
pairwise,
powerset,
take,
unique_everseen,
all_equal,
batched,
)
__all__ = [
'AbortThread',
'SequenceView',
'UnequalIterablesError',
'adjacent',
'all_unique',
'always_iterable',
'always_reversible',
'bucket',
'callback_iter',
'chunked',
'chunked_even',
'circular_shifts',
'collapse',
'combination_index',
'combination_with_replacement_index',
'consecutive_groups',
'constrained_batches',
'consumer',
'count_cycle',
'countable',
'dft',
'difference',
'distinct_combinations',
'distinct_permutations',
'distribute',
'divide',
'doublestarmap',
'duplicates_everseen',
'duplicates_justseen',
'classify_unique',
'exactly_n',
'filter_except',
'filter_map',
'first',
'gray_product',
'groupby_transform',
'ichunked',
'iequals',
'idft',
'ilen',
'interleave',
'interleave_evenly',
'interleave_longest',
'intersperse',
'is_sorted',
'islice_extended',
'iterate',
'iter_suppress',
'join_mappings',
'last',
'locate',
'longest_common_prefix',
'lstrip',
'make_decorator',
'map_except',
'map_if',
'map_reduce',
'mark_ends',
'minmax',
'nth_or_last',
'nth_permutation',
'nth_product',
'nth_combination_with_replacement',
'numeric_range',
'one',
'only',
'outer_product',
'padded',
'partial_product',
'partitions',
'peekable',
'permutation_index',
'powerset_of_sets',
'product_index',
'raise_',
'repeat_each',
'repeat_last',
'replace',
'rlocate',
'rstrip',
'run_length',
'sample',
'seekable',
'set_partitions',
'side_effect',
'sliced',
'sort_together',
'split_after',
'split_at',
'split_before',
'split_into',
'split_when',
'spy',
'stagger',
'strip',
'strictly_n',
'substrings',
'substrings_indexes',
'takewhile_inclusive',
'time_limited',
'unique_in_window',
'unique_to_each',
'unzip',
'value_chain',
'windowed',
'windowed_complete',
'with_iter',
'zip_broadcast',
'zip_equal',
'zip_offset',
]
# math.sumprod is available for Python 3.12+
_fsumprod = getattr(math, 'sumprod', lambda x, y: fsum(map(mul, x, y)))
def chunked(iterable, n, strict=False):
"""Break *iterable* into lists of length *n*:
>>> list(chunked([1, 2, 3, 4, 5, 6], 3))
[[1, 2, 3], [4, 5, 6]]
By the default, the last yielded list will have fewer than *n* elements
if the length of *iterable* is not divisible by *n*:
>>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
[[1, 2, 3], [4, 5, 6], [7, 8]]
To use a fill-in value instead, see the :func:`grouper` recipe.
If the length of *iterable* is not divisible by *n* and *strict* is
``True``, then ``ValueError`` will be raised before the last
list is yielded.
"""
iterator = iter(partial(take, n, iter(iterable)), [])
if strict:
if n is None:
raise ValueError('n must not be None when using strict mode.')
def ret():
for chunk in iterator:
if len(chunk) != n:
raise ValueError('iterable is not divisible by n.')
yield chunk
return iter(ret())
else:
return iterator
def first(iterable, default=_marker):
"""Return the first item of *iterable*, or *default* if *iterable* is
empty.
>>> first([0, 1, 2, 3])
0
>>> first([], 'some default')
'some default'
If *default* is not provided and there are no items in the iterable,
raise ``ValueError``.
:func:`first` is useful when you have a generator of expensive-to-retrieve
values and want any arbitrary one. It is marginally shorter than
``next(iter(iterable), default)``.
"""
for item in iterable:
return item
if default is _marker:
raise ValueError(
'first() was called on an empty iterable, and no '
'default value was provided.'
)
return default
def last(iterable, default=_marker):
"""Return the last item of *iterable*, or *default* if *iterable* is
empty.
>>> last([0, 1, 2, 3])
3
>>> last([], 'some default')
'some default'
If *default* is not provided and there are no items in the iterable,
raise ``ValueError``.
"""
try:
if isinstance(iterable, Sequence):
return iterable[-1]
# Work around https://bugs.python.org/issue38525
elif hasattr(iterable, '__reversed__') and (hexversion != 0x030800F0):
return next(reversed(iterable))
else:
return deque(iterable, maxlen=1)[-1]
except (IndexError, TypeError, StopIteration):
if default is _marker:
raise ValueError(
'last() was called on an empty iterable, and no default was '
'provided.'
)
return default
def nth_or_last(iterable, n, default=_marker):
"""Return the nth or the last item of *iterable*,
or *default* if *iterable* is empty.
>>> nth_or_last([0, 1, 2, 3], 2)
2
>>> nth_or_last([0, 1], 2)
1
>>> nth_or_last([], 0, 'some default')
'some default'
If *default* is not provided and there are no items in the iterable,
raise ``ValueError``.
"""
return last(islice(iterable, n + 1), default=default)
class peekable:
"""Wrap an iterator to allow lookahead and prepending elements.
Call :meth:`peek` on the result to get the value that will be returned
by :func:`next`. This won't advance the iterator:
>>> p = peekable(['a', 'b'])
>>> p.peek()
'a'
>>> next(p)
'a'
Pass :meth:`peek` a default value to return that instead of raising
``StopIteration`` when the iterator is exhausted.
>>> p = peekable([])
>>> p.peek('hi')
'hi'
peekables also offer a :meth:`prepend` method, which "inserts" items
at the head of the iterable:
>>> p = peekable([1, 2, 3])
>>> p.prepend(10, 11, 12)
>>> next(p)
10
>>> p.peek()
11
>>> list(p)
[11, 12, 1, 2, 3]
peekables can be indexed. Index 0 is the item that will be returned by
:func:`next`, index 1 is the item after that, and so on:
The values up to the given index will be cached.
>>> p = peekable(['a', 'b', 'c', 'd'])
>>> p[0]
'a'
>>> p[1]
'b'
>>> next(p)
'a'
Negative indexes are supported, but be aware that they will cache the
remaining items in the source iterator, which may require significant
storage.
To check whether a peekable is exhausted, check its truth value:
>>> p = peekable(['a', 'b'])
>>> if p: # peekable has items
... list(p)
['a', 'b']
>>> if not p: # peekable is exhausted
... list(p)
[]
"""
def __init__(self, iterable):
self._it = iter(iterable)
self._cache = deque()
def __iter__(self):
return self
def __bool__(self):
try:
self.peek()
except StopIteration:
return False
return True
def peek(self, default=_marker):
"""Return the item that will be next returned from ``next()``.
Return ``default`` if there are no items left. If ``default`` is not
provided, raise ``StopIteration``.
"""
if not self._cache:
try:
self._cache.append(next(self._it))
except StopIteration:
if default is _marker:
raise
return default
return self._cache[0]
def prepend(self, *items):
"""Stack up items to be the next ones returned from ``next()`` or
``self.peek()``. The items will be returned in
first in, first out order::
>>> p = peekable([1, 2, 3])
>>> p.prepend(10, 11, 12)
>>> next(p)
10
>>> list(p)
[11, 12, 1, 2, 3]
It is possible, by prepending items, to "resurrect" a peekable that
previously raised ``StopIteration``.
>>> p = peekable([])
>>> next(p)
Traceback (most recent call last):
...
StopIteration
>>> p.prepend(1)
>>> next(p)
1
>>> next(p)
Traceback (most recent call last):
...
StopIteration
"""
self._cache.extendleft(reversed(items))
def __next__(self):
if self._cache:
return self._cache.popleft()
return next(self._it)
def _get_slice(self, index):
# Normalize the slice's arguments
step = 1 if (index.step is None) else index.step
if step > 0:
start = 0 if (index.start is None) else index.start
stop = maxsize if (index.stop is None) else index.stop
elif step < 0:
start = -1 if (index.start is None) else index.start
stop = (-maxsize - 1) if (index.stop is None) else index.stop
else:
raise ValueError('slice step cannot be zero')
# If either the start or stop index is negative, we'll need to cache
# the rest of the iterable in order to slice from the right side.
if (start < 0) or (stop < 0):
self._cache.extend(self._it)
# Otherwise we'll need to find the rightmost index and cache to that
# point.
else:
n = min(max(start, stop) + 1, maxsize)
cache_len = len(self._cache)
if n >= cache_len:
self._cache.extend(islice(self._it, n - cache_len))
return list(self._cache)[index]
def __getitem__(self, index):
if isinstance(index, slice):
return self._get_slice(index)
cache_len = len(self._cache)
if index < 0:
self._cache.extend(self._it)
elif index >= cache_len:
self._cache.extend(islice(self._it, index + 1 - cache_len))
return self._cache[index]
def consumer(func):
"""Decorator that automatically advances a PEP-342-style "reverse iterator"
to its first yield point so you don't have to call ``next()`` on it
manually.
>>> @consumer
... def tally():
... i = 0
... while True:
... print('Thing number %s is %s.' % (i, (yield)))
... i += 1
...
>>> t = tally()
>>> t.send('red')
Thing number 0 is red.
>>> t.send('fish')
Thing number 1 is fish.
Without the decorator, you would have to call ``next(t)`` before
``t.send()`` could be used.
"""
@wraps(func)
def wrapper(*args, **kwargs):
gen = func(*args, **kwargs)
next(gen)
return gen
return wrapper
def ilen(iterable):
"""Return the number of items in *iterable*.
>>> ilen(x for x in range(1000000) if x % 3 == 0)
333334
This consumes the iterable, so handle with care.
"""
# This approach was selected because benchmarks showed it's likely the
# fastest of the known implementations at the time of writing.
# See GitHub tracker: #236, #230.
counter = count()
deque(zip(iterable, counter), maxlen=0)
return next(counter)
def iterate(func, start):
"""Return ``start``, ``func(start)``, ``func(func(start))``, ...
>>> from itertools import islice
>>> list(islice(iterate(lambda x: 2*x, 1), 10))
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
"""
while True:
yield start
try:
start = func(start)
except StopIteration:
break
def with_iter(context_manager):
"""Wrap an iterable in a ``with`` statement, so it closes once exhausted.
For example, this will close the file when the iterator is exhausted::
upper_lines = (line.upper() for line in with_iter(open('foo')))
Any context manager which returns an iterable is a candidate for
``with_iter``.
"""
with context_manager as iterable:
yield from iterable
def one(iterable, too_short=None, too_long=None):
"""Return the first item from *iterable*, which is expected to contain only
that item. Raise an exception if *iterable* is empty or has more than one
item.
:func:`one` is useful for ensuring that an iterable contains only one item.
For example, it can be used to retrieve the result of a database query
that is expected to return a single row.
If *iterable* is empty, ``ValueError`` will be raised. You may specify a
different exception with the *too_short* keyword:
>>> it = []
>>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: too many items in iterable (expected 1)'
>>> too_short = IndexError('too few items')
>>> one(it, too_short=too_short) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
IndexError: too few items
Similarly, if *iterable* contains more than one item, ``ValueError`` will
be raised. You may specify a different exception with the *too_long*
keyword:
>>> it = ['too', 'many']
>>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: Expected exactly one item in iterable, but got 'too',
'many', and perhaps more.
>>> too_long = RuntimeError
>>> one(it, too_long=too_long) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
RuntimeError
Note that :func:`one` attempts to advance *iterable* twice to ensure there
is only one item. See :func:`spy` or :func:`peekable` to check iterable
contents less destructively.
"""
it = iter(iterable)
try:
first_value = next(it)
except StopIteration as exc:
raise (
too_short or ValueError('too few items in iterable (expected 1)')
) from exc
try:
second_value = next(it)
except StopIteration:
pass
else:
msg = (
'Expected exactly one item in iterable, but got {!r}, {!r}, '
'and perhaps more.'.format(first_value, second_value)
)
raise too_long or ValueError(msg)
return first_value
def raise_(exception, *args):
raise exception(*args)
def strictly_n(iterable, n, too_short=None, too_long=None):
"""Validate that *iterable* has exactly *n* items and return them if
it does. If it has fewer than *n* items, call function *too_short*
with those items. If it has more than *n* items, call function
*too_long* with the first ``n + 1`` items.
>>> iterable = ['a', 'b', 'c', 'd']
>>> n = 4
>>> list(strictly_n(iterable, n))
['a', 'b', 'c', 'd']
Note that the returned iterable must be consumed in order for the check to
be made.
By default, *too_short* and *too_long* are functions that raise
``ValueError``.
>>> list(strictly_n('ab', 3)) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: too few items in iterable (got 2)
>>> list(strictly_n('abc', 2)) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: too many items in iterable (got at least 3)
You can instead supply functions that do something else.
*too_short* will be called with the number of items in *iterable*.
*too_long* will be called with `n + 1`.
>>> def too_short(item_count):
... raise RuntimeError
>>> it = strictly_n('abcd', 6, too_short=too_short)
>>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
RuntimeError
>>> def too_long(item_count):
... print('The boss is going to hear about this')
>>> it = strictly_n('abcdef', 4, too_long=too_long)
>>> list(it)
The boss is going to hear about this
['a', 'b', 'c', 'd']
"""
if too_short is None:
too_short = lambda item_count: raise_(
ValueError,
'Too few items in iterable (got {})'.format(item_count),
)
if too_long is None:
too_long = lambda item_count: raise_(
ValueError,
'Too many items in iterable (got at least {})'.format(item_count),
)
it = iter(iterable)
for i in range(n):
try:
item = next(it)
except StopIteration:
too_short(i)
return
else:
yield item
try:
next(it)
except StopIteration:
pass
else:
too_long(n + 1)
def distinct_permutations(iterable, r=None):
"""Yield successive distinct permutations of the elements in *iterable*.
>>> sorted(distinct_permutations([1, 0, 1]))
[(0, 1, 1), (1, 0, 1), (1, 1, 0)]
Equivalent to ``set(permutations(iterable))``, except duplicates are not
generated and thrown away. For larger input sequences this is much more
efficient.
Duplicate permutations arise when there are duplicated elements in the
input iterable. The number of items returned is
`n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of
items input, and each `x_i` is the count of a distinct item in the input
sequence.
If *r* is given, only the *r*-length permutations are yielded.
>>> sorted(distinct_permutations([1, 0, 1], r=2))
[(0, 1), (1, 0), (1, 1)]
>>> sorted(distinct_permutations(range(3), r=2))
[(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
"""
# Algorithm: https://w.wiki/Qai
def _full(A):
while True:
# Yield the permutation we have
yield tuple(A)
# Find the largest index i such that A[i] < A[i + 1]
for i in range(size - 2, -1, -1):
if A[i] < A[i + 1]:
break
# If no such index exists, this permutation is the last one
else:
return
# Find the largest index j greater than j such that A[i] < A[j]
for j in range(size - 1, i, -1):
if A[i] < A[j]:
break
# Swap the value of A[i] with that of A[j], then reverse the
# sequence from A[i + 1] to form the new permutation
A[i], A[j] = A[j], A[i]
A[i + 1 :] = A[: i - size : -1] # A[i + 1:][::-1]
# Algorithm: modified from the above
def _partial(A, r):
# Split A into the first r items and the last r items
head, tail = A[:r], A[r:]
right_head_indexes = range(r - 1, -1, -1)
left_tail_indexes = range(len(tail))
while True:
# Yield the permutation we have
yield tuple(head)
# Starting from the right, find the first index of the head with
# value smaller than the maximum value of the tail - call it i.
pivot = tail[-1]
for i in right_head_indexes:
if head[i] < pivot:
break
pivot = head[i]
else:
return
# Starting from the left, find the first value of the tail
# with a value greater than head[i] and swap.
for j in left_tail_indexes:
if tail[j] > head[i]:
head[i], tail[j] = tail[j], head[i]
break
# If we didn't find one, start from the right and find the first
# index of the head with a value greater than head[i] and swap.
else:
for j in right_head_indexes:
if head[j] > head[i]:
head[i], head[j] = head[j], head[i]
break
# Reverse head[i + 1:] and swap it with tail[:r - (i + 1)]
tail += head[: i - r : -1] # head[i + 1:][::-1]
i += 1
head[i:], tail[:] = tail[: r - i], tail[r - i :]
items = sorted(iterable)
size = len(items)
if r is None:
r = size
if 0 < r <= size:
return _full(items) if (r == size) else _partial(items, r)
return iter(() if r else ((),))
def intersperse(e, iterable, n=1):
"""Intersperse filler element *e* among the items in *iterable*, leaving
*n* items between each filler element.
>>> list(intersperse('!', [1, 2, 3, 4, 5]))
[1, '!', 2, '!', 3, '!', 4, '!', 5]
>>> list(intersperse(None, [1, 2, 3, 4, 5], n=2))
[1, 2, None, 3, 4, None, 5]
"""
if n == 0:
raise ValueError('n must be > 0')
elif n == 1:
# interleave(repeat(e), iterable) -> e, x_0, e, x_1, e, x_2...
# islice(..., 1, None) -> x_0, e, x_1, e, x_2...
return islice(interleave(repeat(e), iterable), 1, None)
else:
# interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]...
# islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]...
# flatten(...) -> x_0, x_1, e, x_2, x_3...
filler = repeat([e])
chunks = chunked(iterable, n)
return flatten(islice(interleave(filler, chunks), 1, None))
def unique_to_each(*iterables):
"""Return the elements from each of the input iterables that aren't in the
other input iterables.
For example, suppose you have a set of packages, each with a set of
dependencies::
{'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}
If you remove one package, which dependencies can also be removed?
If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not
associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for
``pkg_2``, and ``D`` is only needed for ``pkg_3``::
>>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
[['A'], ['C'], ['D']]
If there are duplicates in one input iterable that aren't in the others
they will be duplicated in the output. Input order is preserved::
>>> unique_to_each("mississippi", "missouri")
[['p', 'p'], ['o', 'u', 'r']]
It is assumed that the elements of each iterable are hashable.
"""
pool = [list(it) for it in iterables]
counts = Counter(chain.from_iterable(map(set, pool)))
uniques = {element for element in counts if counts[element] == 1}
return [list(filter(uniques.__contains__, it)) for it in pool]
def windowed(seq, n, fillvalue=None, step=1):
"""Return a sliding window of width *n* over the given iterable.
>>> all_windows = windowed([1, 2, 3, 4, 5], 3)
>>> list(all_windows)
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
When the window is larger than the iterable, *fillvalue* is used in place
of missing values:
>>> list(windowed([1, 2, 3], 4))
[(1, 2, 3, None)]
Each window will advance in increments of *step*:
>>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
[(1, 2, 3), (3, 4, 5), (5, 6, '!')]
To slide into the iterable's items, use :func:`chain` to add filler items
to the left:
>>> iterable = [1, 2, 3, 4]
>>> n = 3
>>> padding = [None] * (n - 1)
>>> list(windowed(chain(padding, iterable), 3))
[(None, None, 1), (None, 1, 2), (1, 2, 3), (2, 3, 4)]
"""
if n < 0:
raise ValueError('n must be >= 0')
if n == 0:
yield ()
return
if step < 1:
raise ValueError('step must be >= 1')
iterable = iter(seq)
# Generate first window
window = deque(islice(iterable, n), maxlen=n)
# Deal with the first window not being full
if not window:
return
if len(window) < n:
yield tuple(window) + ((fillvalue,) * (n - len(window)))
return
yield tuple(window)
# Create the filler for the next windows. The padding ensures
# we have just enough elements to fill the last window.
padding = (fillvalue,) * (n - 1 if step >= n else step - 1)
filler = map(window.append, chain(iterable, padding))
# Generate the rest of the windows
for _ in islice(filler, step - 1, None, step):
yield tuple(window)
def substrings(iterable):
"""Yield all of the substrings of *iterable*.
>>> [''.join(s) for s in substrings('more')]
['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more']
Note that non-string iterables can also be subdivided.
>>> list(substrings([0, 1, 2]))
[(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]
"""
# The length-1 substrings
seq = []
for item in iter(iterable):
seq.append(item)
yield (item,)
seq = tuple(seq)
item_count = len(seq)
# And the rest
for n in range(2, item_count + 1):
for i in range(item_count - n + 1):
yield seq[i : i + n]
def substrings_indexes(seq, reverse=False):
"""Yield all substrings and their positions in *seq*
The items yielded will be a tuple of the form ``(substr, i, j)``, where
``substr == seq[i:j]``.
This function only works for iterables that support slicing, such as
``str`` objects.
>>> for item in substrings_indexes('more'):
... print(item)
('m', 0, 1)
('o', 1, 2)
('r', 2, 3)
('e', 3, 4)
('mo', 0, 2)
('or', 1, 3)
('re', 2, 4)
('mor', 0, 3)
('ore', 1, 4)
('more', 0, 4)
Set *reverse* to ``True`` to yield the same items in the opposite order.
"""
r = range(1, len(seq) + 1)
if reverse:
r = reversed(r)
return (
(seq[i : i + L], i, i + L) for L in r for i in range(len(seq) - L + 1)
)
class bucket:
"""Wrap *iterable* and return an object that buckets the iterable into
child iterables based on a *key* function.
>>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
>>> s = bucket(iterable, key=lambda x: x[0]) # Bucket by 1st character
>>> sorted(list(s)) # Get the keys
['a', 'b', 'c']
>>> a_iterable = s['a']
>>> next(a_iterable)
'a1'
>>> next(a_iterable)
'a2'
>>> list(s['b'])
['b1', 'b2', 'b3']
The original iterable will be advanced and its items will be cached until
they are used by the child iterables. This may require significant storage.
By default, attempting to select a bucket to which no items belong will
exhaust the iterable and cache all values.
If you specify a *validator* function, selected buckets will instead be
checked against it.
>>> from itertools import count
>>> it = count(1, 2) # Infinite sequence of odd numbers
>>> key = lambda x: x % 10 # Bucket by last digit
>>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only
>>> s = bucket(it, key=key, validator=validator)
>>> 2 in s
False
>>> list(s[2])
[]
"""
def __init__(self, iterable, key, validator=None):
self._it = iter(iterable)
self._key = key
self._cache = defaultdict(deque)
self._validator = validator or (lambda x: True)
def __contains__(self, value):
if not self._validator(value):
return False
try:
item = next(self[value])
except StopIteration:
return False
else:
self._cache[value].appendleft(item)
return True
def _get_values(self, value):
"""
Helper to yield items from the parent iterator that match *value*.
Items that don't match are stored in the local cache as they
are encountered.
"""
while True:
# If we've cached some items that match the target value, emit
# the first one and evict it from the cache.
if self._cache[value]:
yield self._cache[value].popleft()
# Otherwise we need to advance the parent iterator to search for
# a matching item, caching the rest.
else:
while True:
try:
item = next(self._it)
except StopIteration:
return
item_value = self._key(item)
if item_value == value:
yield item
break
elif self._validator(item_value):
self._cache[item_value].append(item)
def __iter__(self):
for item in self._it:
item_value = self._key(item)
if self._validator(item_value):
self._cache[item_value].append(item)
yield from self._cache.keys()
def __getitem__(self, value):
if not self._validator(value):
return iter(())
return self._get_values(value)
def spy(iterable, n=1):
"""Return a 2-tuple with a list containing the first *n* elements of
*iterable*, and an iterator with the same items as *iterable*.
This allows you to "look ahead" at the items in the iterable without
advancing it.
There is one item in the list by default:
>>> iterable = 'abcdefg'
>>> head, iterable = spy(iterable)
>>> head
['a']
>>> list(iterable)
['a', 'b', 'c', 'd', 'e', 'f', 'g']
You may use unpacking to retrieve items instead of lists:
>>> (head,), iterable = spy('abcdefg')
>>> head
'a'
>>> (first, second), iterable = spy('abcdefg', 2)
>>> first
'a'
>>> second
'b'
The number of items requested can be larger than the number of items in
the iterable:
>>> iterable = [1, 2, 3, 4, 5]
>>> head, iterable = spy(iterable, 10)
>>> head
[1, 2, 3, 4, 5]
>>> list(iterable)
[1, 2, 3, 4, 5]
"""
it = iter(iterable)
head = take(n, it)
return head.copy(), chain(head, it)
def interleave(*iterables):
"""Return a new iterable yielding from each iterable in turn,
until the shortest is exhausted.
>>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
[1, 4, 6, 2, 5, 7]
For a version that doesn't terminate after the shortest iterable is
exhausted, see :func:`interleave_longest`.
"""
return chain.from_iterable(zip(*iterables))
def interleave_longest(*iterables):
"""Return a new iterable yielding from each iterable in turn,
skipping any that are exhausted.
>>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
[1, 4, 6, 2, 5, 7, 3, 8]
This function produces the same output as :func:`roundrobin`, but may
perform better for some inputs (in particular when the number of iterables
is large).
"""
i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker))
return (x for x in i if x is not _marker)
def interleave_evenly(iterables, lengths=None):
"""
Interleave multiple iterables so that their elements are evenly distributed
throughout the output sequence.
>>> iterables = [1, 2, 3, 4, 5], ['a', 'b']
>>> list(interleave_evenly(iterables))
[1, 2, 'a', 3, 4, 'b', 5]
>>> iterables = [[1, 2, 3], [4, 5], [6, 7, 8]]
>>> list(interleave_evenly(iterables))
[1, 6, 4, 2, 7, 3, 8, 5]
This function requires iterables of known length. Iterables without
``__len__()`` can be used by manually specifying lengths with *lengths*:
>>> from itertools import combinations, repeat
>>> iterables = [combinations(range(4), 2), ['a', 'b', 'c']]
>>> lengths = [4 * (4 - 1) // 2, 3]
>>> list(interleave_evenly(iterables, lengths=lengths))
[(0, 1), (0, 2), 'a', (0, 3), (1, 2), 'b', (1, 3), (2, 3), 'c']
Based on Bresenham's algorithm.
"""
if lengths is None:
try:
lengths = [len(it) for it in iterables]
except TypeError:
raise ValueError(
'Iterable lengths could not be determined automatically. '
'Specify them with the lengths keyword.'
)
elif len(iterables) != len(lengths):
raise ValueError('Mismatching number of iterables and lengths.')
dims = len(lengths)
# sort iterables by length, descending
lengths_permute = sorted(
range(dims), key=lambda i: lengths[i], reverse=True
)
lengths_desc = [lengths[i] for i in lengths_permute]
iters_desc = [iter(iterables[i]) for i in lengths_permute]
# the longest iterable is the primary one (Bresenham: the longest
# distance along an axis)
delta_primary, deltas_secondary = lengths_desc[0], lengths_desc[1:]
iter_primary, iters_secondary = iters_desc[0], iters_desc[1:]
errors = [delta_primary // dims] * len(deltas_secondary)
to_yield = sum(lengths)
while to_yield:
yield next(iter_primary)
to_yield -= 1
# update errors for each secondary iterable
errors = [e - delta for e, delta in zip(errors, deltas_secondary)]
# those iterables for which the error is negative are yielded
# ("diagonal step" in Bresenham)
for i, e_ in enumerate(errors):
if e_ < 0:
yield next(iters_secondary[i])
to_yield -= 1
errors[i] += delta_primary
def collapse(iterable, base_type=None, levels=None):
"""Flatten an iterable with multiple levels of nesting (e.g., a list of
lists of tuples) into non-iterable types.
>>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
>>> list(collapse(iterable))
[1, 2, 3, 4, 5, 6]
Binary and text strings are not considered iterable and
will not be collapsed.
To avoid collapsing other types, specify *base_type*:
>>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
>>> list(collapse(iterable, base_type=tuple))
['ab', ('cd', 'ef'), 'gh', 'ij']
Specify *levels* to stop flattening after a certain level:
>>> iterable = [('a', ['b']), ('c', ['d'])]
>>> list(collapse(iterable)) # Fully flattened
['a', 'b', 'c', 'd']
>>> list(collapse(iterable, levels=1)) # Only one level flattened
['a', ['b'], 'c', ['d']]
"""
stack = deque()
# Add our first node group, treat the iterable as a single node
stack.appendleft((0, repeat(iterable, 1)))
while stack:
node_group = stack.popleft()
level, nodes = node_group
# Check if beyond max level
if levels is not None and level > levels:
yield from nodes
continue
for node in nodes:
# Check if done iterating
if isinstance(node, (str, bytes)) or (
(base_type is not None) and isinstance(node, base_type)
):
yield node
# Otherwise try to create child nodes
else:
try:
tree = iter(node)
except TypeError:
yield node
else:
# Save our current location
stack.appendleft(node_group)
# Append the new child node
stack.appendleft((level + 1, tree))
# Break to process child node
break
def side_effect(func, iterable, chunk_size=None, before=None, after=None):
"""Invoke *func* on each item in *iterable* (or on each *chunk_size* group
of items) before yielding the item.
`func` must be a function that takes a single argument. Its return value
will be discarded.
*before* and *after* are optional functions that take no arguments. They
will be executed before iteration starts and after it ends, respectively.
`side_effect` can be used for logging, updating progress bars, or anything
that is not functionally "pure."
Emitting a status message:
>>> from more_itertools import consume
>>> func = lambda item: print('Received {}'.format(item))
>>> consume(side_effect(func, range(2)))
Received 0
Received 1
Operating on chunks of items:
>>> pair_sums = []
>>> func = lambda chunk: pair_sums.append(sum(chunk))
>>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
[0, 1, 2, 3, 4, 5]
>>> list(pair_sums)
[1, 5, 9]
Writing to a file-like object:
>>> from io import StringIO
>>> from more_itertools import consume
>>> f = StringIO()
>>> func = lambda x: print(x, file=f)
>>> before = lambda: print(u'HEADER', file=f)
>>> after = f.close
>>> it = [u'a', u'b', u'c']
>>> consume(side_effect(func, it, before=before, after=after))
>>> f.closed
True
"""
try:
if before is not None:
before()
if chunk_size is None:
for item in iterable:
func(item)
yield item
else:
for chunk in chunked(iterable, chunk_size):
func(chunk)
yield from chunk
finally:
if after is not None:
after()
def sliced(seq, n, strict=False):
"""Yield slices of length *n* from the sequence *seq*.
>>> list(sliced((1, 2, 3, 4, 5, 6), 3))
[(1, 2, 3), (4, 5, 6)]
By the default, the last yielded slice will have fewer than *n* elements
if the length of *seq* is not divisible by *n*:
>>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
[(1, 2, 3), (4, 5, 6), (7, 8)]
If the length of *seq* is not divisible by *n* and *strict* is
``True``, then ``ValueError`` will be raised before the last
slice is yielded.
This function will only work for iterables that support slicing.
For non-sliceable iterables, see :func:`chunked`.
"""
iterator = takewhile(len, (seq[i : i + n] for i in count(0, n)))
if strict:
def ret():
for _slice in iterator:
if len(_slice) != n:
raise ValueError("seq is not divisible by n.")
yield _slice
return iter(ret())
else:
return iterator
def split_at(iterable, pred, maxsplit=-1, keep_separator=False):
"""Yield lists of items from *iterable*, where each list is delimited by
an item where callable *pred* returns ``True``.
>>> list(split_at('abcdcba', lambda x: x == 'b'))
[['a'], ['c', 'd', 'c'], ['a']]
>>> list(split_at(range(10), lambda n: n % 2 == 1))
[[0], [2], [4], [6], [8], []]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_at(range(10), lambda n: n % 2 == 1, maxsplit=2))
[[0], [2], [4, 5, 6, 7, 8, 9]]
By default, the delimiting items are not included in the output.
To include them, set *keep_separator* to ``True``.
>>> list(split_at('abcdcba', lambda x: x == 'b', keep_separator=True))
[['a'], ['b'], ['c', 'd', 'c'], ['b'], ['a']]
"""
if maxsplit == 0:
yield list(iterable)
return
buf = []
it = iter(iterable)
for item in it:
if pred(item):
yield buf
if keep_separator:
yield [item]
if maxsplit == 1:
yield list(it)
return
buf = []
maxsplit -= 1
else:
buf.append(item)
yield buf
def split_before(iterable, pred, maxsplit=-1):
"""Yield lists of items from *iterable*, where each list ends just before
an item for which callable *pred* returns ``True``:
>>> list(split_before('OneTwo', lambda s: s.isupper()))
[['O', 'n', 'e'], ['T', 'w', 'o']]
>>> list(split_before(range(10), lambda n: n % 3 == 0))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_before(range(10), lambda n: n % 3 == 0, maxsplit=2))
[[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]
"""
if maxsplit == 0:
yield list(iterable)
return
buf = []
it = iter(iterable)
for item in it:
if pred(item) and buf:
yield buf
if maxsplit == 1:
yield [item] + list(it)
return
buf = []
maxsplit -= 1
buf.append(item)
if buf:
yield buf
def split_after(iterable, pred, maxsplit=-1):
"""Yield lists of items from *iterable*, where each list ends with an
item where callable *pred* returns ``True``:
>>> list(split_after('one1two2', lambda s: s.isdigit()))
[['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]
>>> list(split_after(range(10), lambda n: n % 3 == 0))
[[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_after(range(10), lambda n: n % 3 == 0, maxsplit=2))
[[0], [1, 2, 3], [4, 5, 6, 7, 8, 9]]
"""
if maxsplit == 0:
yield list(iterable)
return
buf = []
it = iter(iterable)
for item in it:
buf.append(item)
if pred(item) and buf:
yield buf
if maxsplit == 1:
buf = list(it)
if buf:
yield buf
return
buf = []
maxsplit -= 1
if buf:
yield buf
def split_when(iterable, pred, maxsplit=-1):
"""Split *iterable* into pieces based on the output of *pred*.
*pred* should be a function that takes successive pairs of items and
returns ``True`` if the iterable should be split in between them.
For example, to find runs of increasing numbers, split the iterable when
element ``i`` is larger than element ``i + 1``:
>>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2], lambda x, y: x > y))
[[1, 2, 3, 3], [2, 5], [2, 4], [2]]
At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
then there is no limit on the number of splits:
>>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2],
... lambda x, y: x > y, maxsplit=2))
[[1, 2, 3, 3], [2, 5], [2, 4, 2]]
"""
if maxsplit == 0:
yield list(iterable)
return
it = iter(iterable)
try:
cur_item = next(it)
except StopIteration:
return
buf = [cur_item]
for next_item in it:
if pred(cur_item, next_item):
yield buf
if maxsplit == 1:
yield [next_item] + list(it)
return
buf = []
maxsplit -= 1
buf.append(next_item)
cur_item = next_item
yield buf
def split_into(iterable, sizes):
"""Yield a list of sequential items from *iterable* of length 'n' for each
integer 'n' in *sizes*.
>>> list(split_into([1,2,3,4,5,6], [1,2,3]))
[[1], [2, 3], [4, 5, 6]]
If the sum of *sizes* is smaller than the length of *iterable*, then the
remaining items of *iterable* will not be returned.
>>> list(split_into([1,2,3,4,5,6], [2,3]))
[[1, 2], [3, 4, 5]]
If the sum of *sizes* is larger than the length of *iterable*, fewer items
will be returned in the iteration that overruns *iterable* and further
lists will be empty:
>>> list(split_into([1,2,3,4], [1,2,3,4]))
[[1], [2, 3], [4], []]
When a ``None`` object is encountered in *sizes*, the returned list will
contain items up to the end of *iterable* the same way that itertools.slice
does:
>>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None]))
[[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]]
:func:`split_into` can be useful for grouping a series of items where the
sizes of the groups are not uniform. An example would be where in a row
from a table, multiple columns represent elements of the same feature
(e.g. a point represented by x,y,z) but, the format is not the same for
all columns.
"""
# convert the iterable argument into an iterator so its contents can
# be consumed by islice in case it is a generator
it = iter(iterable)
for size in sizes:
if size is None:
yield list(it)
return
else:
yield list(islice(it, size))
def padded(iterable, fillvalue=None, n=None, next_multiple=False):
"""Yield the elements from *iterable*, followed by *fillvalue*, such that
at least *n* items are emitted.
>>> list(padded([1, 2, 3], '?', 5))
[1, 2, 3, '?', '?']
If *next_multiple* is ``True``, *fillvalue* will be emitted until the
number of items emitted is a multiple of *n*:
>>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
[1, 2, 3, 4, None, None]
If *n* is ``None``, *fillvalue* will be emitted indefinitely.
To create an *iterable* of exactly size *n*, you can truncate with
:func:`islice`.
>>> list(islice(padded([1, 2, 3], '?'), 5))
[1, 2, 3, '?', '?']
>>> list(islice(padded([1, 2, 3, 4, 5, 6, 7, 8], '?'), 5))
[1, 2, 3, 4, 5]
"""
iterable = iter(iterable)
iterable_with_repeat = chain(iterable, repeat(fillvalue))
if n is None:
return iterable_with_repeat
elif n < 1:
raise ValueError('n must be at least 1')
elif next_multiple:
def slice_generator():
for first in iterable:
yield (first,)
yield islice(iterable_with_repeat, n - 1)
# While elements exist produce slices of size n
return chain.from_iterable(slice_generator())
else:
# Ensure the first batch is at least size n then iterate
return chain(islice(iterable_with_repeat, n), iterable)
def repeat_each(iterable, n=2):
"""Repeat each element in *iterable* *n* times.
>>> list(repeat_each('ABC', 3))
['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']
"""
return chain.from_iterable(map(repeat, iterable, repeat(n)))
def repeat_last(iterable, default=None):
"""After the *iterable* is exhausted, keep yielding its last element.
>>> list(islice(repeat_last(range(3)), 5))
[0, 1, 2, 2, 2]
If the iterable is empty, yield *default* forever::
>>> list(islice(repeat_last(range(0), 42), 5))
[42, 42, 42, 42, 42]
"""
item = _marker
for item in iterable:
yield item
final = default if item is _marker else item
yield from repeat(final)
def distribute(n, iterable):
"""Distribute the items from *iterable* among *n* smaller iterables.
>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
>>> list(group_1)
[1, 3, 5]
>>> list(group_2)
[2, 4, 6]
If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical:
>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
>>> [list(c) for c in children]
[[1, 4, 7], [2, 5], [3, 6]]
If the length of *iterable* is smaller than *n*, then the last returned
iterables will be empty:
>>> children = distribute(5, [1, 2, 3])
>>> [list(c) for c in children]
[[1], [2], [3], [], []]
This function uses :func:`itertools.tee` and may require significant
storage.
If you need the order items in the smaller iterables to match the
original iterable, see :func:`divide`.
"""
if n < 1:
raise ValueError('n must be at least 1')
children = tee(iterable, n)
return [islice(it, index, None, n) for index, it in enumerate(children)]
def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None):
"""Yield tuples whose elements are offset from *iterable*.
The amount by which the `i`-th item in each tuple is offset is given by
the `i`-th item in *offsets*.
>>> list(stagger([0, 1, 2, 3]))
[(None, 0, 1), (0, 1, 2), (1, 2, 3)]
>>> list(stagger(range(8), offsets=(0, 2, 4)))
[(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]
By default, the sequence will end when the final element of a tuple is the
last item in the iterable. To continue until the first element of a tuple
is the last item in the iterable, set *longest* to ``True``::
>>> list(stagger([0, 1, 2, 3], longest=True))
[(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]
By default, ``None`` will be used to replace offsets beyond the end of the
sequence. Specify *fillvalue* to use some other value.
"""
children = tee(iterable, len(offsets))
return zip_offset(
*children, offsets=offsets, longest=longest, fillvalue=fillvalue
)
def zip_equal(*iterables):
"""``zip`` the input *iterables* together, but raise
``UnequalIterablesError`` if they aren't all the same length.
>>> it_1 = range(3)
>>> it_2 = iter('abc')
>>> list(zip_equal(it_1, it_2))
[(0, 'a'), (1, 'b'), (2, 'c')]
>>> it_1 = range(3)
>>> it_2 = iter('abcd')
>>> list(zip_equal(it_1, it_2)) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
more_itertools.more.UnequalIterablesError: Iterables have different
lengths
"""
if hexversion >= 0x30A00A6:
warnings.warn(
(
'zip_equal will be removed in a future version of '
'more-itertools. Use the builtin zip function with '
'strict=True instead.'
),
DeprecationWarning,
)
return _zip_equal(*iterables)
def zip_offset(*iterables, offsets, longest=False, fillvalue=None):
"""``zip`` the input *iterables* together, but offset the `i`-th iterable
by the `i`-th item in *offsets*.
>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]
This can be used as a lightweight alternative to SciPy or pandas to analyze
data sets in which some series have a lead or lag relationship.
By default, the sequence will end when the shortest iterable is exhausted.
To continue until the longest iterable is exhausted, set *longest* to
``True``.
>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]
By default, ``None`` will be used to replace offsets beyond the end of the
sequence. Specify *fillvalue* to use some other value.
"""
if len(iterables) != len(offsets):
raise ValueError("Number of iterables and offsets didn't match")
staggered = []
for it, n in zip(iterables, offsets):
if n < 0:
staggered.append(chain(repeat(fillvalue, -n), it))
elif n > 0:
staggered.append(islice(it, n, None))
else:
staggered.append(it)
if longest:
return zip_longest(*staggered, fillvalue=fillvalue)
return zip(*staggered)
def sort_together(iterables, key_list=(0,), key=None, reverse=False):
"""Return the input iterables sorted together, with *key_list* as the
priority for sorting. All iterables are trimmed to the length of the
shortest one.
This can be used like the sorting function in a spreadsheet. If each
iterable represents a column of data, the key list determines which
columns are used for sorting.
By default, all iterables are sorted using the ``0``-th iterable::
>>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
>>> sort_together(iterables)
[(1, 2, 3, 4), ('d', 'c', 'b', 'a')]
Set a different key list to sort according to another iterable.
Specifying multiple keys dictates how ties are broken::
>>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
>>> sort_together(iterables, key_list=(1, 2))
[(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]
To sort by a function of the elements of the iterable, pass a *key*
function. Its arguments are the elements of the iterables corresponding to
the key list::
>>> names = ('a', 'b', 'c')
>>> lengths = (1, 2, 3)
>>> widths = (5, 2, 1)
>>> def area(length, width):
... return length * width
>>> sort_together([names, lengths, widths], key_list=(1, 2), key=area)
[('c', 'b', 'a'), (3, 2, 1), (1, 2, 5)]
Set *reverse* to ``True`` to sort in descending order.
>>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
[(3, 2, 1), ('a', 'b', 'c')]
"""
if key is None:
# if there is no key function, the key argument to sorted is an
# itemgetter
key_argument = itemgetter(*key_list)
else:
# if there is a key function, call it with the items at the offsets
# specified by the key function as arguments
key_list = list(key_list)
if len(key_list) == 1:
# if key_list contains a single item, pass the item at that offset
# as the only argument to the key function
key_offset = key_list[0]
key_argument = lambda zipped_items: key(zipped_items[key_offset])
else:
# if key_list contains multiple items, use itemgetter to return a
# tuple of items, which we pass as *args to the key function
get_key_items = itemgetter(*key_list)
key_argument = lambda zipped_items: key(
*get_key_items(zipped_items)
)
return list(
zip(*sorted(zip(*iterables), key=key_argument, reverse=reverse))
)
def unzip(iterable):
"""The inverse of :func:`zip`, this function disaggregates the elements
of the zipped *iterable*.
The ``i``-th iterable contains the ``i``-th element from each element
of the zipped iterable. The first element is used to determine the
length of the remaining elements.
>>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> letters, numbers = unzip(iterable)
>>> list(letters)
['a', 'b', 'c', 'd']
>>> list(numbers)
[1, 2, 3, 4]
This is similar to using ``zip(*iterable)``, but it avoids reading
*iterable* into memory. Note, however, that this function uses
:func:`itertools.tee` and thus may require significant storage.
"""
head, iterable = spy(iter(iterable))
if not head:
# empty iterable, e.g. zip([], [], [])
return ()
# spy returns a one-length iterable as head
head = head[0]
iterables = tee(iterable, len(head))
def itemgetter(i):
def getter(obj):
try:
return obj[i]
except IndexError:
# basically if we have an iterable like
# iter([(1, 2, 3), (4, 5), (6,)])
# the second unzipped iterable would fail at the third tuple
# since it would try to access tup[1]
# same with the third unzipped iterable and the second tuple
# to support these "improperly zipped" iterables,
# we create a custom itemgetter
# which just stops the unzipped iterables
# at first length mismatch
raise StopIteration
return getter
return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables))
def divide(n, iterable):
"""Divide the elements from *iterable* into *n* parts, maintaining
order.
>>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
>>> list(group_1)
[1, 2, 3]
>>> list(group_2)
[4, 5, 6]
If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical:
>>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
>>> [list(c) for c in children]
[[1, 2, 3], [4, 5], [6, 7]]
If the length of the iterable is smaller than n, then the last returned
iterables will be empty:
>>> children = divide(5, [1, 2, 3])
>>> [list(c) for c in children]
[[1], [2], [3], [], []]
This function will exhaust the iterable before returning.
If order is not important, see :func:`distribute`, which does not first
pull the iterable into memory.
"""
if n < 1:
raise ValueError('n must be at least 1')
try:
iterable[:0]
except TypeError:
seq = tuple(iterable)
else:
seq = iterable
q, r = divmod(len(seq), n)
ret = []
stop = 0
for i in range(1, n + 1):
start = stop
stop += q + 1 if i <= r else q
ret.append(iter(seq[start:stop]))
return ret
def always_iterable(obj, base_type=(str, bytes)):
"""If *obj* is iterable, return an iterator over its items::
>>> obj = (1, 2, 3)
>>> list(always_iterable(obj))
[1, 2, 3]
If *obj* is not iterable, return a one-item iterable containing *obj*::
>>> obj = 1
>>> list(always_iterable(obj))
[1]
If *obj* is ``None``, return an empty iterable:
>>> obj = None
>>> list(always_iterable(None))
[]
By default, binary and text strings are not considered iterable::
>>> obj = 'foo'
>>> list(always_iterable(obj))
['foo']
If *base_type* is set, objects for which ``isinstance(obj, base_type)``
returns ``True`` won't be considered iterable.
>>> obj = {'a': 1}
>>> list(always_iterable(obj)) # Iterate over the dict's keys
['a']
>>> list(always_iterable(obj, base_type=dict)) # Treat dicts as a unit
[{'a': 1}]
Set *base_type* to ``None`` to avoid any special handling and treat objects
Python considers iterable as iterable:
>>> obj = 'foo'
>>> list(always_iterable(obj, base_type=None))
['f', 'o', 'o']
"""
if obj is None:
return iter(())
if (base_type is not None) and isinstance(obj, base_type):
return iter((obj,))
try:
return iter(obj)
except TypeError:
return iter((obj,))
def adjacent(predicate, iterable, distance=1):
"""Return an iterable over `(bool, item)` tuples where the `item` is
drawn from *iterable* and the `bool` indicates whether
that item satisfies the *predicate* or is adjacent to an item that does.
For example, to find whether items are adjacent to a ``3``::
>>> list(adjacent(lambda x: x == 3, range(6)))
[(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]
Set *distance* to change what counts as adjacent. For example, to find
whether items are two places away from a ``3``:
>>> list(adjacent(lambda x: x == 3, range(6), distance=2))
[(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]
This is useful for contextualizing the results of a search function.
For example, a code comparison tool might want to identify lines that
have changed, but also surrounding lines to give the viewer of the diff
context.
The predicate function will only be called once for each item in the
iterable.
See also :func:`groupby_transform`, which can be used with this function
to group ranges of items with the same `bool` value.
"""
# Allow distance=0 mainly for testing that it reproduces results with map()
if distance < 0:
raise ValueError('distance must be at least 0')
i1, i2 = tee(iterable)
padding = [False] * distance
selected = chain(padding, map(predicate, i1), padding)
adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1))
return zip(adjacent_to_selected, i2)
def groupby_transform(iterable, keyfunc=None, valuefunc=None, reducefunc=None):
"""An extension of :func:`itertools.groupby` that can apply transformations
to the grouped data.
* *keyfunc* is a function computing a key value for each item in *iterable*
* *valuefunc* is a function that transforms the individual items from
*iterable* after grouping
* *reducefunc* is a function that transforms each group of items
>>> iterable = 'aAAbBBcCC'
>>> keyfunc = lambda k: k.upper()
>>> valuefunc = lambda v: v.lower()
>>> reducefunc = lambda g: ''.join(g)
>>> list(groupby_transform(iterable, keyfunc, valuefunc, reducefunc))
[('A', 'aaa'), ('B', 'bbb'), ('C', 'ccc')]
Each optional argument defaults to an identity function if not specified.
:func:`groupby_transform` is useful when grouping elements of an iterable
using a separate iterable as the key. To do this, :func:`zip` the iterables
and pass a *keyfunc* that extracts the first element and a *valuefunc*
that extracts the second element::
>>> from operator import itemgetter
>>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
>>> values = 'abcdefghi'
>>> iterable = zip(keys, values)
>>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
>>> [(k, ''.join(g)) for k, g in grouper]
[(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]
Note that the order of items in the iterable is significant.
Only adjacent items are grouped together, so if you don't want any
duplicate groups, you should sort the iterable by the key function.
"""
ret = groupby(iterable, keyfunc)
if valuefunc:
ret = ((k, map(valuefunc, g)) for k, g in ret)
if reducefunc:
ret = ((k, reducefunc(g)) for k, g in ret)
return ret
class numeric_range(abc.Sequence, abc.Hashable):
"""An extension of the built-in ``range()`` function whose arguments can
be any orderable numeric type.
With only *stop* specified, *start* defaults to ``0`` and *step*
defaults to ``1``. The output items will match the type of *stop*:
>>> list(numeric_range(3.5))
[0.0, 1.0, 2.0, 3.0]
With only *start* and *stop* specified, *step* defaults to ``1``. The
output items will match the type of *start*:
>>> from decimal import Decimal
>>> start = Decimal('2.1')
>>> stop = Decimal('5.1')
>>> list(numeric_range(start, stop))
[Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]
With *start*, *stop*, and *step* specified the output items will match
the type of ``start + step``:
>>> from fractions import Fraction
>>> start = Fraction(1, 2) # Start at 1/2
>>> stop = Fraction(5, 2) # End at 5/2
>>> step = Fraction(1, 2) # Count by 1/2
>>> list(numeric_range(start, stop, step))
[Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]
If *step* is zero, ``ValueError`` is raised. Negative steps are supported:
>>> list(numeric_range(3, -1, -1.0))
[3.0, 2.0, 1.0, 0.0]
Be aware of the limitations of floating point numbers; the representation
of the yielded numbers may be surprising.
``datetime.datetime`` objects can be used for *start* and *stop*, if *step*
is a ``datetime.timedelta`` object:
>>> import datetime
>>> start = datetime.datetime(2019, 1, 1)
>>> stop = datetime.datetime(2019, 1, 3)
>>> step = datetime.timedelta(days=1)
>>> items = iter(numeric_range(start, stop, step))
>>> next(items)
datetime.datetime(2019, 1, 1, 0, 0)
>>> next(items)
datetime.datetime(2019, 1, 2, 0, 0)
"""
_EMPTY_HASH = hash(range(0, 0))
def __init__(self, *args):
argc = len(args)
if argc == 1:
(self._stop,) = args
self._start = type(self._stop)(0)
self._step = type(self._stop - self._start)(1)
elif argc == 2:
self._start, self._stop = args
self._step = type(self._stop - self._start)(1)
elif argc == 3:
self._start, self._stop, self._step = args
elif argc == 0:
raise TypeError(
'numeric_range expected at least '
'1 argument, got {}'.format(argc)
)
else:
raise TypeError(
'numeric_range expected at most '
'3 arguments, got {}'.format(argc)
)
self._zero = type(self._step)(0)
if self._step == self._zero:
raise ValueError('numeric_range() arg 3 must not be zero')
self._growing = self._step > self._zero
def __bool__(self):
if self._growing:
return self._start < self._stop
else:
return self._start > self._stop
def __contains__(self, elem):
if self._growing:
if self._start <= elem < self._stop:
return (elem - self._start) % self._step == self._zero
else:
if self._start >= elem > self._stop:
return (self._start - elem) % (-self._step) == self._zero
return False
def __eq__(self, other):
if isinstance(other, numeric_range):
empty_self = not bool(self)
empty_other = not bool(other)
if empty_self or empty_other:
return empty_self and empty_other # True if both empty
else:
return (
self._start == other._start
and self._step == other._step
and self._get_by_index(-1) == other._get_by_index(-1)
)
else:
return False
def __getitem__(self, key):
if isinstance(key, int):
return self._get_by_index(key)
elif isinstance(key, slice):
step = self._step if key.step is None else key.step * self._step
if key.start is None or key.start <= -self._len:
start = self._start
elif key.start >= self._len:
start = self._stop
else: # -self._len < key.start < self._len
start = self._get_by_index(key.start)
if key.stop is None or key.stop >= self._len:
stop = self._stop
elif key.stop <= -self._len:
stop = self._start
else: # -self._len < key.stop < self._len
stop = self._get_by_index(key.stop)
return numeric_range(start, stop, step)
else:
raise TypeError(
'numeric range indices must be '
'integers or slices, not {}'.format(type(key).__name__)
)
def __hash__(self):
if self:
return hash((self._start, self._get_by_index(-1), self._step))
else:
return self._EMPTY_HASH
def __iter__(self):
values = (self._start + (n * self._step) for n in count())
if self._growing:
return takewhile(partial(gt, self._stop), values)
else:
return takewhile(partial(lt, self._stop), values)
def __len__(self):
return self._len
@cached_property
def _len(self):
if self._growing:
start = self._start
stop = self._stop
step = self._step
else:
start = self._stop
stop = self._start
step = -self._step
distance = stop - start
if distance <= self._zero:
return 0
else: # distance > 0 and step > 0: regular euclidean division
q, r = divmod(distance, step)
return int(q) + int(r != self._zero)
def __reduce__(self):
return numeric_range, (self._start, self._stop, self._step)
def __repr__(self):
if self._step == 1:
return "numeric_range({}, {})".format(
repr(self._start), repr(self._stop)
)
else:
return "numeric_range({}, {}, {})".format(
repr(self._start), repr(self._stop), repr(self._step)
)
def __reversed__(self):
return iter(
numeric_range(
self._get_by_index(-1), self._start - self._step, -self._step
)
)
def count(self, value):
return int(value in self)
def index(self, value):
if self._growing:
if self._start <= value < self._stop:
q, r = divmod(value - self._start, self._step)
if r == self._zero:
return int(q)
else:
if self._start >= value > self._stop:
q, r = divmod(self._start - value, -self._step)
if r == self._zero:
return int(q)
raise ValueError("{} is not in numeric range".format(value))
def _get_by_index(self, i):
if i < 0:
i += self._len
if i < 0 or i >= self._len:
raise IndexError("numeric range object index out of range")
return self._start + i * self._step
def count_cycle(iterable, n=None):
"""Cycle through the items from *iterable* up to *n* times, yielding
the number of completed cycles along with each item. If *n* is omitted the
process repeats indefinitely.
>>> list(count_cycle('AB', 3))
[(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]
"""
iterable = tuple(iterable)
if not iterable:
return iter(())
counter = count() if n is None else range(n)
return ((i, item) for i in counter for item in iterable)
def mark_ends(iterable):
"""Yield 3-tuples of the form ``(is_first, is_last, item)``.
>>> list(mark_ends('ABC'))
[(True, False, 'A'), (False, False, 'B'), (False, True, 'C')]
Use this when looping over an iterable to take special action on its first
and/or last items:
>>> iterable = ['Header', 100, 200, 'Footer']
>>> total = 0
>>> for is_first, is_last, item in mark_ends(iterable):
... if is_first:
... continue # Skip the header
... if is_last:
... continue # Skip the footer
... total += item
>>> print(total)
300
"""
it = iter(iterable)
try:
b = next(it)
except StopIteration:
return
try:
for i in count():
a = b
b = next(it)
yield i == 0, False, a
except StopIteration:
yield i == 0, True, a
def locate(iterable, pred=bool, window_size=None):
"""Yield the index of each item in *iterable* for which *pred* returns
``True``.
*pred* defaults to :func:`bool`, which will select truthy items:
>>> list(locate([0, 1, 1, 0, 1, 0, 0]))
[1, 2, 4]
Set *pred* to a custom function to, e.g., find the indexes for a particular
item.
>>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
[1, 3]
If *window_size* is given, then the *pred* function will be called with
that many items. This enables searching for sub-sequences:
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pred = lambda *args: args == (1, 2, 3)
>>> list(locate(iterable, pred=pred, window_size=3))
[1, 5, 9]
Use with :func:`seekable` to find indexes and then retrieve the associated
items:
>>> from itertools import count
>>> from more_itertools import seekable
>>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count())
>>> it = seekable(source)
>>> pred = lambda x: x > 100
>>> indexes = locate(it, pred=pred)
>>> i = next(indexes)
>>> it.seek(i)
>>> next(it)
106
"""
if window_size is None:
return compress(count(), map(pred, iterable))
if window_size < 1:
raise ValueError('window size must be at least 1')
it = windowed(iterable, window_size, fillvalue=_marker)
return compress(count(), starmap(pred, it))
def longest_common_prefix(iterables):
"""Yield elements of the longest common prefix amongst given *iterables*.
>>> ''.join(longest_common_prefix(['abcd', 'abc', 'abf']))
'ab'
"""
return (c[0] for c in takewhile(all_equal, zip(*iterables)))
def lstrip(iterable, pred):
"""Yield the items from *iterable*, but strip any from the beginning
for which *pred* returns ``True``.
For example, to remove a set of items from the start of an iterable:
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(lstrip(iterable, pred))
[1, 2, None, 3, False, None]
This function is analogous to to :func:`str.lstrip`, and is essentially
an wrapper for :func:`itertools.dropwhile`.
"""
return dropwhile(pred, iterable)
def rstrip(iterable, pred):
"""Yield the items from *iterable*, but strip any from the end
for which *pred* returns ``True``.
For example, to remove a set of items from the end of an iterable:
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(rstrip(iterable, pred))
[None, False, None, 1, 2, None, 3]
This function is analogous to :func:`str.rstrip`.
"""
cache = []
cache_append = cache.append
cache_clear = cache.clear
for x in iterable:
if pred(x):
cache_append(x)
else:
yield from cache
cache_clear()
yield x
def strip(iterable, pred):
"""Yield the items from *iterable*, but strip any from the
beginning and end for which *pred* returns ``True``.
For example, to remove a set of items from both ends of an iterable:
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(strip(iterable, pred))
[1, 2, None, 3]
This function is analogous to :func:`str.strip`.
"""
return rstrip(lstrip(iterable, pred), pred)
class islice_extended:
"""An extension of :func:`itertools.islice` that supports negative values
for *stop*, *start*, and *step*.
>>> iterable = iter('abcdefgh')
>>> list(islice_extended(iterable, -4, -1))
['e', 'f', 'g']
Slices with negative values require some caching of *iterable*, but this
function takes care to minimize the amount of memory required.
For example, you can use a negative step with an infinite iterator:
>>> from itertools import count
>>> list(islice_extended(count(), 110, 99, -2))
[110, 108, 106, 104, 102, 100]
You can also use slice notation directly:
>>> iterable = map(str, count())
>>> it = islice_extended(iterable)[10:20:2]
>>> list(it)
['10', '12', '14', '16', '18']
"""
def __init__(self, iterable, *args):
it = iter(iterable)
if args:
self._iterable = _islice_helper(it, slice(*args))
else:
self._iterable = it
def __iter__(self):
return self
def __next__(self):
return next(self._iterable)
def __getitem__(self, key):
if isinstance(key, slice):
return islice_extended(_islice_helper(self._iterable, key))
raise TypeError('islice_extended.__getitem__ argument must be a slice')
def _islice_helper(it, s):
start = s.start
stop = s.stop
if s.step == 0:
raise ValueError('step argument must be a non-zero integer or None.')
step = s.step or 1
if step > 0:
start = 0 if (start is None) else start
if start < 0:
# Consume all but the last -start items
cache = deque(enumerate(it, 1), maxlen=-start)
len_iter = cache[-1][0] if cache else 0
# Adjust start to be positive
i = max(len_iter + start, 0)
# Adjust stop to be positive
if stop is None:
j = len_iter
elif stop >= 0:
j = min(stop, len_iter)
else:
j = max(len_iter + stop, 0)
# Slice the cache
n = j - i
if n <= 0:
return
for index, item in islice(cache, 0, n, step):
yield item
elif (stop is not None) and (stop < 0):
# Advance to the start position
next(islice(it, start, start), None)
# When stop is negative, we have to carry -stop items while
# iterating
cache = deque(islice(it, -stop), maxlen=-stop)
for index, item in enumerate(it):
cached_item = cache.popleft()
if index % step == 0:
yield cached_item
cache.append(item)
else:
# When both start and stop are positive we have the normal case
yield from islice(it, start, stop, step)
else:
start = -1 if (start is None) else start
if (stop is not None) and (stop < 0):
# Consume all but the last items
n = -stop - 1
cache = deque(enumerate(it, 1), maxlen=n)
len_iter = cache[-1][0] if cache else 0
# If start and stop are both negative they are comparable and
# we can just slice. Otherwise we can adjust start to be negative
# and then slice.
if start < 0:
i, j = start, stop
else:
i, j = min(start - len_iter, -1), None
for index, item in list(cache)[i:j:step]:
yield item
else:
# Advance to the stop position
if stop is not None:
m = stop + 1
next(islice(it, m, m), None)
# stop is positive, so if start is negative they are not comparable
# and we need the rest of the items.
if start < 0:
i = start
n = None
# stop is None and start is positive, so we just need items up to
# the start index.
elif stop is None:
i = None
n = start + 1
# Both stop and start are positive, so they are comparable.
else:
i = None
n = start - stop
if n <= 0:
return
cache = list(islice(it, n))
yield from cache[i::step]
def always_reversible(iterable):
"""An extension of :func:`reversed` that supports all iterables, not
just those which implement the ``Reversible`` or ``Sequence`` protocols.
>>> print(*always_reversible(x for x in range(3)))
2 1 0
If the iterable is already reversible, this function returns the
result of :func:`reversed()`. If the iterable is not reversible,
this function will cache the remaining items in the iterable and
yield them in reverse order, which may require significant storage.
"""
try:
return reversed(iterable)
except TypeError:
return reversed(list(iterable))
def consecutive_groups(iterable, ordering=lambda x: x):
"""Yield groups of consecutive items using :func:`itertools.groupby`.
The *ordering* function determines whether two items are adjacent by
returning their position.
By default, the ordering function is the identity function. This is
suitable for finding runs of numbers:
>>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40]
>>> for group in consecutive_groups(iterable):
... print(list(group))
[1]
[10, 11, 12]
[20]
[30, 31, 32, 33]
[40]
For finding runs of adjacent letters, try using the :meth:`index` method
of a string of letters:
>>> from string import ascii_lowercase
>>> iterable = 'abcdfgilmnop'
>>> ordering = ascii_lowercase.index
>>> for group in consecutive_groups(iterable, ordering):
... print(list(group))
['a', 'b', 'c', 'd']
['f', 'g']
['i']
['l', 'm', 'n', 'o', 'p']
Each group of consecutive items is an iterator that shares it source with
*iterable*. When an an output group is advanced, the previous group is
no longer available unless its elements are copied (e.g., into a ``list``).
>>> iterable = [1, 2, 11, 12, 21, 22]
>>> saved_groups = []
>>> for group in consecutive_groups(iterable):
... saved_groups.append(list(group)) # Copy group elements
>>> saved_groups
[[1, 2], [11, 12], [21, 22]]
"""
for k, g in groupby(
enumerate(iterable), key=lambda x: x[0] - ordering(x[1])
):
yield map(itemgetter(1), g)
def difference(iterable, func=sub, *, initial=None):
"""This function is the inverse of :func:`itertools.accumulate`. By default
it will compute the first difference of *iterable* using
:func:`operator.sub`:
>>> from itertools import accumulate
>>> iterable = accumulate([0, 1, 2, 3, 4]) # produces 0, 1, 3, 6, 10
>>> list(difference(iterable))
[0, 1, 2, 3, 4]
*func* defaults to :func:`operator.sub`, but other functions can be
specified. They will be applied as follows::
A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ...
For example, to do progressive division:
>>> iterable = [1, 2, 6, 24, 120]
>>> func = lambda x, y: x // y
>>> list(difference(iterable, func))
[1, 2, 3, 4, 5]
If the *initial* keyword is set, the first element will be skipped when
computing successive differences.
>>> it = [10, 11, 13, 16] # from accumulate([1, 2, 3], initial=10)
>>> list(difference(it, initial=10))
[1, 2, 3]
"""
a, b = tee(iterable)
try:
first = [next(b)]
except StopIteration:
return iter([])
if initial is not None:
first = []
return chain(first, map(func, b, a))
class SequenceView(Sequence):
"""Return a read-only view of the sequence object *target*.
:class:`SequenceView` objects are analogous to Python's built-in
"dictionary view" types. They provide a dynamic view of a sequence's items,
meaning that when the sequence updates, so does the view.
>>> seq = ['0', '1', '2']
>>> view = SequenceView(seq)
>>> view
SequenceView(['0', '1', '2'])
>>> seq.append('3')
>>> view
SequenceView(['0', '1', '2', '3'])
Sequence views support indexing, slicing, and length queries. They act
like the underlying sequence, except they don't allow assignment:
>>> view[1]
'1'
>>> view[1:-1]
['1', '2']
>>> len(view)
4
Sequence views are useful as an alternative to copying, as they don't
require (much) extra storage.
"""
def __init__(self, target):
if not isinstance(target, Sequence):
raise TypeError
self._target = target
def __getitem__(self, index):
return self._target[index]
def __len__(self):
return len(self._target)
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, repr(self._target))
class seekable:
"""Wrap an iterator to allow for seeking backward and forward. This
progressively caches the items in the source iterable so they can be
re-visited.
Call :meth:`seek` with an index to seek to that position in the source
iterable.
To "reset" an iterator, seek to ``0``:
>>> from itertools import count
>>> it = seekable((str(n) for n in count()))
>>> next(it), next(it), next(it)
('0', '1', '2')
>>> it.seek(0)
>>> next(it), next(it), next(it)
('0', '1', '2')
>>> next(it)
'3'
You can also seek forward:
>>> it = seekable((str(n) for n in range(20)))
>>> it.seek(10)
>>> next(it)
'10'
>>> it.relative_seek(-2) # Seeking relative to the current position
>>> next(it)
'9'
>>> it.seek(20) # Seeking past the end of the source isn't a problem
>>> list(it)
[]
>>> it.seek(0) # Resetting works even after hitting the end
>>> next(it), next(it), next(it)
('0', '1', '2')
Call :meth:`peek` to look ahead one item without advancing the iterator:
>>> it = seekable('1234')
>>> it.peek()
'1'
>>> list(it)
['1', '2', '3', '4']
>>> it.peek(default='empty')
'empty'
Before the iterator is at its end, calling :func:`bool` on it will return
``True``. After it will return ``False``:
>>> it = seekable('5678')
>>> bool(it)
True
>>> list(it)
['5', '6', '7', '8']
>>> bool(it)
False
You may view the contents of the cache with the :meth:`elements` method.
That returns a :class:`SequenceView`, a view that updates automatically:
>>> it = seekable((str(n) for n in range(10)))
>>> next(it), next(it), next(it)
('0', '1', '2')
>>> elements = it.elements()
>>> elements
SequenceView(['0', '1', '2'])
>>> next(it)
'3'
>>> elements
SequenceView(['0', '1', '2', '3'])
By default, the cache grows as the source iterable progresses, so beware of
wrapping very large or infinite iterables. Supply *maxlen* to limit the
size of the cache (this of course limits how far back you can seek).
>>> from itertools import count
>>> it = seekable((str(n) for n in count()), maxlen=2)
>>> next(it), next(it), next(it), next(it)
('0', '1', '2', '3')
>>> list(it.elements())
['2', '3']
>>> it.seek(0)
>>> next(it), next(it), next(it), next(it)
('2', '3', '4', '5')
>>> next(it)
'6'
"""
def __init__(self, iterable, maxlen=None):
self._source = iter(iterable)
if maxlen is None:
self._cache = []
else:
self._cache = deque([], maxlen)
self._index = None
def __iter__(self):
return self
def __next__(self):
if self._index is not None:
try:
item = self._cache[self._index]
except IndexError:
self._index = None
else:
self._index += 1
return item
item = next(self._source)
self._cache.append(item)
return item
def __bool__(self):
try:
self.peek()
except StopIteration:
return False
return True
def peek(self, default=_marker):
try:
peeked = next(self)
except StopIteration:
if default is _marker:
raise
return default
if self._index is None:
self._index = len(self._cache)
self._index -= 1
return peeked
def elements(self):
return SequenceView(self._cache)
def seek(self, index):
self._index = index
remainder = index - len(self._cache)
if remainder > 0:
consume(self, remainder)
def relative_seek(self, count):
index = len(self._cache)
self.seek(max(index + count, 0))
class run_length:
"""
:func:`run_length.encode` compresses an iterable with run-length encoding.
It yields groups of repeated items with the count of how many times they
were repeated:
>>> uncompressed = 'abbcccdddd'
>>> list(run_length.encode(uncompressed))
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
:func:`run_length.decode` decompresses an iterable that was previously
compressed with run-length encoding. It yields the items of the
decompressed iterable:
>>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> list(run_length.decode(compressed))
['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd']
"""
@staticmethod
def encode(iterable):
return ((k, ilen(g)) for k, g in groupby(iterable))
@staticmethod
def decode(iterable):
return chain.from_iterable(repeat(k, n) for k, n in iterable)
def exactly_n(iterable, n, predicate=bool):
"""Return ``True`` if exactly ``n`` items in the iterable are ``True``
according to the *predicate* function.
>>> exactly_n([True, True, False], 2)
True
>>> exactly_n([True, True, False], 1)
False
>>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3)
True
The iterable will be advanced until ``n + 1`` truthy items are encountered,
so avoid calling it on infinite iterables.
"""
return len(take(n + 1, filter(predicate, iterable))) == n
def circular_shifts(iterable):
"""Return a list of circular shifts of *iterable*.
>>> circular_shifts(range(4))
[(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)]
"""
lst = list(iterable)
return take(len(lst), windowed(cycle(lst), len(lst)))
def make_decorator(wrapping_func, result_index=0):
"""Return a decorator version of *wrapping_func*, which is a function that
modifies an iterable. *result_index* is the position in that function's
signature where the iterable goes.
This lets you use itertools on the "production end," i.e. at function
definition. This can augment what the function returns without changing the
function's code.
For example, to produce a decorator version of :func:`chunked`:
>>> from more_itertools import chunked
>>> chunker = make_decorator(chunked, result_index=0)
>>> @chunker(3)
... def iter_range(n):
... return iter(range(n))
...
>>> list(iter_range(9))
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
To only allow truthy items to be returned:
>>> truth_serum = make_decorator(filter, result_index=1)
>>> @truth_serum(bool)
... def boolean_test():
... return [0, 1, '', ' ', False, True]
...
>>> list(boolean_test())
[1, ' ', True]
The :func:`peekable` and :func:`seekable` wrappers make for practical
decorators:
>>> from more_itertools import peekable
>>> peekable_function = make_decorator(peekable)
>>> @peekable_function()
... def str_range(*args):
... return (str(x) for x in range(*args))
...
>>> it = str_range(1, 20, 2)
>>> next(it), next(it), next(it)
('1', '3', '5')
>>> it.peek()
'7'
>>> next(it)
'7'
"""
# See https://sites.google.com/site/bbayles/index/decorator_factory for
# notes on how this works.
def decorator(*wrapping_args, **wrapping_kwargs):
def outer_wrapper(f):
def inner_wrapper(*args, **kwargs):
result = f(*args, **kwargs)
wrapping_args_ = list(wrapping_args)
wrapping_args_.insert(result_index, result)
return wrapping_func(*wrapping_args_, **wrapping_kwargs)
return inner_wrapper
return outer_wrapper
return decorator
def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None):
"""Return a dictionary that maps the items in *iterable* to categories
defined by *keyfunc*, transforms them with *valuefunc*, and
then summarizes them by category with *reducefunc*.
*valuefunc* defaults to the identity function if it is unspecified.
If *reducefunc* is unspecified, no summarization takes place:
>>> keyfunc = lambda x: x.upper()
>>> result = map_reduce('abbccc', keyfunc)
>>> sorted(result.items())
[('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])]
Specifying *valuefunc* transforms the categorized items:
>>> keyfunc = lambda x: x.upper()
>>> valuefunc = lambda x: 1
>>> result = map_reduce('abbccc', keyfunc, valuefunc)
>>> sorted(result.items())
[('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])]
Specifying *reducefunc* summarizes the categorized items:
>>> keyfunc = lambda x: x.upper()
>>> valuefunc = lambda x: 1
>>> reducefunc = sum
>>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc)
>>> sorted(result.items())
[('A', 1), ('B', 2), ('C', 3)]
You may want to filter the input iterable before applying the map/reduce
procedure:
>>> all_items = range(30)
>>> items = [x for x in all_items if 10 <= x <= 20] # Filter
>>> keyfunc = lambda x: x % 2 # Evens map to 0; odds to 1
>>> categories = map_reduce(items, keyfunc=keyfunc)
>>> sorted(categories.items())
[(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])]
>>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum)
>>> sorted(summaries.items())
[(0, 90), (1, 75)]
Note that all items in the iterable are gathered into a list before the
summarization step, which may require significant storage.
The returned object is a :obj:`collections.defaultdict` with the
``default_factory`` set to ``None``, such that it behaves like a normal
dictionary.
"""
valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc
ret = defaultdict(list)
for item in iterable:
key = keyfunc(item)
value = valuefunc(item)
ret[key].append(value)
if reducefunc is not None:
for key, value_list in ret.items():
ret[key] = reducefunc(value_list)
ret.default_factory = None
return ret
def rlocate(iterable, pred=bool, window_size=None):
"""Yield the index of each item in *iterable* for which *pred* returns
``True``, starting from the right and moving left.
*pred* defaults to :func:`bool`, which will select truthy items:
>>> list(rlocate([0, 1, 1, 0, 1, 0, 0])) # Truthy at 1, 2, and 4
[4, 2, 1]
Set *pred* to a custom function to, e.g., find the indexes for a particular
item:
>>> iterable = iter('abcb')
>>> pred = lambda x: x == 'b'
>>> list(rlocate(iterable, pred))
[3, 1]
If *window_size* is given, then the *pred* function will be called with
that many items. This enables searching for sub-sequences:
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pred = lambda *args: args == (1, 2, 3)
>>> list(rlocate(iterable, pred=pred, window_size=3))
[9, 5, 1]
Beware, this function won't return anything for infinite iterables.
If *iterable* is reversible, ``rlocate`` will reverse it and search from
the right. Otherwise, it will search from the left and return the results
in reverse order.
See :func:`locate` to for other example applications.
"""
if window_size is None:
try:
len_iter = len(iterable)
return (len_iter - i - 1 for i in locate(reversed(iterable), pred))
except TypeError:
pass
return reversed(list(locate(iterable, pred, window_size)))
def replace(iterable, pred, substitutes, count=None, window_size=1):
"""Yield the items from *iterable*, replacing the items for which *pred*
returns ``True`` with the items from the iterable *substitutes*.
>>> iterable = [1, 1, 0, 1, 1, 0, 1, 1]
>>> pred = lambda x: x == 0
>>> substitutes = (2, 3)
>>> list(replace(iterable, pred, substitutes))
[1, 1, 2, 3, 1, 1, 2, 3, 1, 1]
If *count* is given, the number of replacements will be limited:
>>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0]
>>> pred = lambda x: x == 0
>>> substitutes = [None]
>>> list(replace(iterable, pred, substitutes, count=2))
[1, 1, None, 1, 1, None, 1, 1, 0]
Use *window_size* to control the number of items passed as arguments to
*pred*. This allows for locating and replacing subsequences.
>>> iterable = [0, 1, 2, 5, 0, 1, 2, 5]
>>> window_size = 3
>>> pred = lambda *args: args == (0, 1, 2) # 3 items passed to pred
>>> substitutes = [3, 4] # Splice in these items
>>> list(replace(iterable, pred, substitutes, window_size=window_size))
[3, 4, 5, 3, 4, 5]
"""
if window_size < 1:
raise ValueError('window_size must be at least 1')
# Save the substitutes iterable, since it's used more than once
substitutes = tuple(substitutes)
# Add padding such that the number of windows matches the length of the
# iterable
it = chain(iterable, [_marker] * (window_size - 1))
windows = windowed(it, window_size)
n = 0
for w in windows:
# If the current window matches our predicate (and we haven't hit
# our maximum number of replacements), splice in the substitutes
# and then consume the following windows that overlap with this one.
# For example, if the iterable is (0, 1, 2, 3, 4...)
# and the window size is 2, we have (0, 1), (1, 2), (2, 3)...
# If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2)
if pred(*w):
if (count is None) or (n < count):
n += 1
yield from substitutes
consume(windows, window_size - 1)
continue
# If there was no match (or we've reached the replacement limit),
# yield the first item from the window.
if w and (w[0] is not _marker):
yield w[0]
def partitions(iterable):
"""Yield all possible order-preserving partitions of *iterable*.
>>> iterable = 'abc'
>>> for part in partitions(iterable):
... print([''.join(p) for p in part])
['abc']
['a', 'bc']
['ab', 'c']
['a', 'b', 'c']
This is unrelated to :func:`partition`.
"""
sequence = list(iterable)
n = len(sequence)
for i in powerset(range(1, n)):
yield [sequence[i:j] for i, j in zip((0,) + i, i + (n,))]
def set_partitions(iterable, k=None):
"""
Yield the set partitions of *iterable* into *k* parts. Set partitions are
not order-preserving.
>>> iterable = 'abc'
>>> for part in set_partitions(iterable, 2):
... print([''.join(p) for p in part])
['a', 'bc']
['ab', 'c']
['b', 'ac']
If *k* is not given, every set partition is generated.
>>> iterable = 'abc'
>>> for part in set_partitions(iterable):
... print([''.join(p) for p in part])
['abc']
['a', 'bc']
['ab', 'c']
['b', 'ac']
['a', 'b', 'c']
"""
L = list(iterable)
n = len(L)
if k is not None:
if k < 1:
raise ValueError(
"Can't partition in a negative or zero number of groups"
)
elif k > n:
return
def set_partitions_helper(L, k):
n = len(L)
if k == 1:
yield [L]
elif n == k:
yield [[s] for s in L]
else:
e, *M = L
for p in set_partitions_helper(M, k - 1):
yield [[e], *p]
for p in set_partitions_helper(M, k):
for i in range(len(p)):
yield p[:i] + [[e] + p[i]] + p[i + 1 :]
if k is None:
for k in range(1, n + 1):
yield from set_partitions_helper(L, k)
else:
yield from set_partitions_helper(L, k)
class time_limited:
"""
Yield items from *iterable* until *limit_seconds* have passed.
If the time limit expires before all items have been yielded, the
``timed_out`` parameter will be set to ``True``.
>>> from time import sleep
>>> def generator():
... yield 1
... yield 2
... sleep(0.2)
... yield 3
>>> iterable = time_limited(0.1, generator())
>>> list(iterable)
[1, 2]
>>> iterable.timed_out
True
Note that the time is checked before each item is yielded, and iteration
stops if the time elapsed is greater than *limit_seconds*. If your time
limit is 1 second, but it takes 2 seconds to generate the first item from
the iterable, the function will run for 2 seconds and not yield anything.
As a special case, when *limit_seconds* is zero, the iterator never
returns anything.
"""
def __init__(self, limit_seconds, iterable):
if limit_seconds < 0:
raise ValueError('limit_seconds must be positive')
self.limit_seconds = limit_seconds
self._iterable = iter(iterable)
self._start_time = monotonic()
self.timed_out = False
def __iter__(self):
return self
def __next__(self):
if self.limit_seconds == 0:
self.timed_out = True
raise StopIteration
item = next(self._iterable)
if monotonic() - self._start_time > self.limit_seconds:
self.timed_out = True
raise StopIteration
return item
def only(iterable, default=None, too_long=None):
"""If *iterable* has only one item, return it.
If it has zero items, return *default*.
If it has more than one item, raise the exception given by *too_long*,
which is ``ValueError`` by default.
>>> only([], default='missing')
'missing'
>>> only([1])
1
>>> only([1, 2]) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: Expected exactly one item in iterable, but got 1, 2,
and perhaps more.'
>>> only([1, 2], too_long=TypeError) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError
Note that :func:`only` attempts to advance *iterable* twice to ensure there
is only one item. See :func:`spy` or :func:`peekable` to check
iterable contents less destructively.
"""
it = iter(iterable)
first_value = next(it, default)
try:
second_value = next(it)
except StopIteration:
pass
else:
msg = (
'Expected exactly one item in iterable, but got {!r}, {!r}, '
'and perhaps more.'.format(first_value, second_value)
)
raise too_long or ValueError(msg)
return first_value
def _ichunk(iterable, n):
cache = deque()
chunk = islice(iterable, n)
def generator():
while True:
if cache:
yield cache.popleft()
else:
try:
item = next(chunk)
except StopIteration:
return
else:
yield item
def materialize_next(n=1):
# if n not specified materialize everything
if n is None:
cache.extend(chunk)
return len(cache)
to_cache = n - len(cache)
# materialize up to n
if to_cache > 0:
cache.extend(islice(chunk, to_cache))
# return number materialized up to n
return min(n, len(cache))
return (generator(), materialize_next)
def ichunked(iterable, n):
"""Break *iterable* into sub-iterables with *n* elements each.
:func:`ichunked` is like :func:`chunked`, but it yields iterables
instead of lists.
If the sub-iterables are read in order, the elements of *iterable*
won't be stored in memory.
If they are read out of order, :func:`itertools.tee` is used to cache
elements as necessary.
>>> from itertools import count
>>> all_chunks = ichunked(count(), 4)
>>> c_1, c_2, c_3 = next(all_chunks), next(all_chunks), next(all_chunks)
>>> list(c_2) # c_1's elements have been cached; c_3's haven't been
[4, 5, 6, 7]
>>> list(c_1)
[0, 1, 2, 3]
>>> list(c_3)
[8, 9, 10, 11]
"""
iterable = iter(iterable)
while True:
# Create new chunk
chunk, materialize_next = _ichunk(iterable, n)
# Check to see whether we're at the end of the source iterable
if not materialize_next():
return
yield chunk
# Fill previous chunk's cache
materialize_next(None)
def iequals(*iterables):
"""Return ``True`` if all given *iterables* are equal to each other,
which means that they contain the same elements in the same order.
The function is useful for comparing iterables of different data types
or iterables that do not support equality checks.
>>> iequals("abc", ['a', 'b', 'c'], ('a', 'b', 'c'), iter("abc"))
True
>>> iequals("abc", "acb")
False
Not to be confused with :func:`all_equal`, which checks whether all
elements of iterable are equal to each other.
"""
return all(map(all_equal, zip_longest(*iterables, fillvalue=object())))
def distinct_combinations(iterable, r):
"""Yield the distinct combinations of *r* items taken from *iterable*.
>>> list(distinct_combinations([0, 0, 1], 2))
[(0, 0), (0, 1)]
Equivalent to ``set(combinations(iterable))``, except duplicates are not
generated and thrown away. For larger input sequences this is much more
efficient.
"""
if r < 0:
raise ValueError('r must be non-negative')
elif r == 0:
yield ()
return
pool = tuple(iterable)
generators = [unique_everseen(enumerate(pool), key=itemgetter(1))]
current_combo = [None] * r
level = 0
while generators:
try:
cur_idx, p = next(generators[-1])
except StopIteration:
generators.pop()
level -= 1
continue
current_combo[level] = p
if level + 1 == r:
yield tuple(current_combo)
else:
generators.append(
unique_everseen(
enumerate(pool[cur_idx + 1 :], cur_idx + 1),
key=itemgetter(1),
)
)
level += 1
def filter_except(validator, iterable, *exceptions):
"""Yield the items from *iterable* for which the *validator* function does
not raise one of the specified *exceptions*.
*validator* is called for each item in *iterable*.
It should be a function that accepts one argument and raises an exception
if that item is not valid.
>>> iterable = ['1', '2', 'three', '4', None]
>>> list(filter_except(int, iterable, ValueError, TypeError))
['1', '2', '4']
If an exception other than one given by *exceptions* is raised by
*validator*, it is raised like normal.
"""
for item in iterable:
try:
validator(item)
except exceptions:
pass
else:
yield item
def map_except(function, iterable, *exceptions):
"""Transform each item from *iterable* with *function* and yield the
result, unless *function* raises one of the specified *exceptions*.
*function* is called to transform each item in *iterable*.
It should accept one argument.
>>> iterable = ['1', '2', 'three', '4', None]
>>> list(map_except(int, iterable, ValueError, TypeError))
[1, 2, 4]
If an exception other than one given by *exceptions* is raised by
*function*, it is raised like normal.
"""
for item in iterable:
try:
yield function(item)
except exceptions:
pass
def map_if(iterable, pred, func, func_else=lambda x: x):
"""Evaluate each item from *iterable* using *pred*. If the result is
equivalent to ``True``, transform the item with *func* and yield it.
Otherwise, transform the item with *func_else* and yield it.
*pred*, *func*, and *func_else* should each be functions that accept
one argument. By default, *func_else* is the identity function.
>>> from math import sqrt
>>> iterable = list(range(-5, 5))
>>> iterable
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
>>> list(map_if(iterable, lambda x: x > 3, lambda x: 'toobig'))
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 'toobig']
>>> list(map_if(iterable, lambda x: x >= 0,
... lambda x: f'{sqrt(x):.2f}', lambda x: None))
[None, None, None, None, None, '0.00', '1.00', '1.41', '1.73', '2.00']
"""
for item in iterable:
yield func(item) if pred(item) else func_else(item)
def _sample_unweighted(iterable, k):
# Implementation of "Algorithm L" from the 1994 paper by Kim-Hung Li:
# "Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))".
# Fill up the reservoir (collection of samples) with the first `k` samples
reservoir = take(k, iterable)
# Generate random number that's the largest in a sample of k U(0,1) numbers
# Largest order statistic: https://en.wikipedia.org/wiki/Order_statistic
W = exp(log(random()) / k)
# The number of elements to skip before changing the reservoir is a random
# number with a geometric distribution. Sample it using random() and logs.
next_index = k + floor(log(random()) / log(1 - W))
for index, element in enumerate(iterable, k):
if index == next_index:
reservoir[randrange(k)] = element
# The new W is the largest in a sample of k U(0, `old_W`) numbers
W *= exp(log(random()) / k)
next_index += floor(log(random()) / log(1 - W)) + 1
return reservoir
def _sample_weighted(iterable, k, weights):
# Implementation of "A-ExpJ" from the 2006 paper by Efraimidis et al. :
# "Weighted random sampling with a reservoir".
# Log-transform for numerical stability for weights that are small/large
weight_keys = (log(random()) / weight for weight in weights)
# Fill up the reservoir (collection of samples) with the first `k`
# weight-keys and elements, then heapify the list.
reservoir = take(k, zip(weight_keys, iterable))
heapify(reservoir)
# The number of jumps before changing the reservoir is a random variable
# with an exponential distribution. Sample it using random() and logs.
smallest_weight_key, _ = reservoir[0]
weights_to_skip = log(random()) / smallest_weight_key
for weight, element in zip(weights, iterable):
if weight >= weights_to_skip:
# The notation here is consistent with the paper, but we store
# the weight-keys in log-space for better numerical stability.
smallest_weight_key, _ = reservoir[0]
t_w = exp(weight * smallest_weight_key)
r_2 = uniform(t_w, 1) # generate U(t_w, 1)
weight_key = log(r_2) / weight
heapreplace(reservoir, (weight_key, element))
smallest_weight_key, _ = reservoir[0]
weights_to_skip = log(random()) / smallest_weight_key
else:
weights_to_skip -= weight
# Equivalent to [element for weight_key, element in sorted(reservoir)]
return [heappop(reservoir)[1] for _ in range(k)]
def sample(iterable, k, weights=None):
"""Return a *k*-length list of elements chosen (without replacement)
from the *iterable*. Like :func:`random.sample`, but works on iterables
of unknown length.
>>> iterable = range(100)
>>> sample(iterable, 5) # doctest: +SKIP
[81, 60, 96, 16, 4]
An iterable with *weights* may also be given:
>>> iterable = range(100)
>>> weights = (i * i + 1 for i in range(100))
>>> sampled = sample(iterable, 5, weights=weights) # doctest: +SKIP
[79, 67, 74, 66, 78]
The algorithm can also be used to generate weighted random permutations.
The relative weight of each item determines the probability that it
appears late in the permutation.
>>> data = "abcdefgh"
>>> weights = range(1, len(data) + 1)
>>> sample(data, k=len(data), weights=weights) # doctest: +SKIP
['c', 'a', 'b', 'e', 'g', 'd', 'h', 'f']
"""
if k == 0:
return []
iterable = iter(iterable)
if weights is None:
return _sample_unweighted(iterable, k)
else:
weights = iter(weights)
return _sample_weighted(iterable, k, weights)
def is_sorted(iterable, key=None, reverse=False, strict=False):
"""Returns ``True`` if the items of iterable are in sorted order, and
``False`` otherwise. *key* and *reverse* have the same meaning that they do
in the built-in :func:`sorted` function.
>>> is_sorted(['1', '2', '3', '4', '5'], key=int)
True
>>> is_sorted([5, 4, 3, 1, 2], reverse=True)
False
If *strict*, tests for strict sorting, that is, returns ``False`` if equal
elements are found:
>>> is_sorted([1, 2, 2])
True
>>> is_sorted([1, 2, 2], strict=True)
False
The function returns ``False`` after encountering the first out-of-order
item. If there are no out-of-order items, the iterable is exhausted.
"""
compare = (le if reverse else ge) if strict else (lt if reverse else gt)
it = iterable if key is None else map(key, iterable)
return not any(starmap(compare, pairwise(it)))
class AbortThread(BaseException):
pass
class callback_iter:
"""Convert a function that uses callbacks to an iterator.
Let *func* be a function that takes a `callback` keyword argument.
For example:
>>> def func(callback=None):
... for i, c in [(1, 'a'), (2, 'b'), (3, 'c')]:
... if callback:
... callback(i, c)
... return 4
Use ``with callback_iter(func)`` to get an iterator over the parameters
that are delivered to the callback.
>>> with callback_iter(func) as it:
... for args, kwargs in it:
... print(args)
(1, 'a')
(2, 'b')
(3, 'c')
The function will be called in a background thread. The ``done`` property
indicates whether it has completed execution.
>>> it.done
True
If it completes successfully, its return value will be available
in the ``result`` property.
>>> it.result
4
Notes:
* If the function uses some keyword argument besides ``callback``, supply
*callback_kwd*.
* If it finished executing, but raised an exception, accessing the
``result`` property will raise the same exception.
* If it hasn't finished executing, accessing the ``result``
property from within the ``with`` block will raise ``RuntimeError``.
* If it hasn't finished executing, accessing the ``result`` property from
outside the ``with`` block will raise a
``more_itertools.AbortThread`` exception.
* Provide *wait_seconds* to adjust how frequently the it is polled for
output.
"""
def __init__(self, func, callback_kwd='callback', wait_seconds=0.1):
self._func = func
self._callback_kwd = callback_kwd
self._aborted = False
self._future = None
self._wait_seconds = wait_seconds
# Lazily import concurrent.future
self._executor = __import__(
'concurrent.futures'
).futures.ThreadPoolExecutor(max_workers=1)
self._iterator = self._reader()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self._aborted = True
self._executor.shutdown()
def __iter__(self):
return self
def __next__(self):
return next(self._iterator)
@property
def done(self):
if self._future is None:
return False
return self._future.done()
@property
def result(self):
if not self.done:
raise RuntimeError('Function has not yet completed')
return self._future.result()
def _reader(self):
q = Queue()
def callback(*args, **kwargs):
if self._aborted:
raise AbortThread('canceled by user')
q.put((args, kwargs))
self._future = self._executor.submit(
self._func, **{self._callback_kwd: callback}
)
while True:
try:
item = q.get(timeout=self._wait_seconds)
except Empty:
pass
else:
q.task_done()
yield item
if self._future.done():
break
remaining = []
while True:
try:
item = q.get_nowait()
except Empty:
break
else:
q.task_done()
remaining.append(item)
q.join()
yield from remaining
def windowed_complete(iterable, n):
"""
Yield ``(beginning, middle, end)`` tuples, where:
* Each ``middle`` has *n* items from *iterable*
* Each ``beginning`` has the items before the ones in ``middle``
* Each ``end`` has the items after the ones in ``middle``
>>> iterable = range(7)
>>> n = 3
>>> for beginning, middle, end in windowed_complete(iterable, n):
... print(beginning, middle, end)
() (0, 1, 2) (3, 4, 5, 6)
(0,) (1, 2, 3) (4, 5, 6)
(0, 1) (2, 3, 4) (5, 6)
(0, 1, 2) (3, 4, 5) (6,)
(0, 1, 2, 3) (4, 5, 6) ()
Note that *n* must be at least 0 and most equal to the length of
*iterable*.
This function will exhaust the iterable and may require significant
storage.
"""
if n < 0:
raise ValueError('n must be >= 0')
seq = tuple(iterable)
size = len(seq)
if n > size:
raise ValueError('n must be <= len(seq)')
for i in range(size - n + 1):
beginning = seq[:i]
middle = seq[i : i + n]
end = seq[i + n :]
yield beginning, middle, end
def all_unique(iterable, key=None):
"""
Returns ``True`` if all the elements of *iterable* are unique (no two
elements are equal).
>>> all_unique('ABCB')
False
If a *key* function is specified, it will be used to make comparisons.
>>> all_unique('ABCb')
True
>>> all_unique('ABCb', str.lower)
False
The function returns as soon as the first non-unique element is
encountered. Iterables with a mix of hashable and unhashable items can
be used, but the function will be slower for unhashable items.
"""
seenset = set()
seenset_add = seenset.add
seenlist = []
seenlist_add = seenlist.append
for element in map(key, iterable) if key else iterable:
try:
if element in seenset:
return False
seenset_add(element)
except TypeError:
if element in seenlist:
return False
seenlist_add(element)
return True
def nth_product(index, *args):
"""Equivalent to ``list(product(*args))[index]``.
The products of *args* can be ordered lexicographically.
:func:`nth_product` computes the product at sort position *index* without
computing the previous products.
>>> nth_product(8, range(2), range(2), range(2), range(2))
(1, 0, 0, 0)
``IndexError`` will be raised if the given *index* is invalid.
"""
pools = list(map(tuple, reversed(args)))
ns = list(map(len, pools))
c = reduce(mul, ns)
if index < 0:
index += c
if not 0 <= index < c:
raise IndexError
result = []
for pool, n in zip(pools, ns):
result.append(pool[index % n])
index //= n
return tuple(reversed(result))
def nth_permutation(iterable, r, index):
"""Equivalent to ``list(permutations(iterable, r))[index]```
The subsequences of *iterable* that are of length *r* where order is
important can be ordered lexicographically. :func:`nth_permutation`
computes the subsequence at sort position *index* directly, without
computing the previous subsequences.
>>> nth_permutation('ghijk', 2, 5)
('h', 'i')
``ValueError`` will be raised If *r* is negative or greater than the length
of *iterable*.
``IndexError`` will be raised if the given *index* is invalid.
"""
pool = list(iterable)
n = len(pool)
if r is None or r == n:
r, c = n, factorial(n)
elif not 0 <= r < n:
raise ValueError
else:
c = perm(n, r)
assert c > 0 # factortial(n)>0, and r<n so perm(n,r) is never zero
if index < 0:
index += c
if not 0 <= index < c:
raise IndexError
result = [0] * r
q = index * factorial(n) // c if r < n else index
for d in range(1, n + 1):
q, i = divmod(q, d)
if 0 <= n - d < r:
result[n - d] = i
if q == 0:
break
return tuple(map(pool.pop, result))
def nth_combination_with_replacement(iterable, r, index):
"""Equivalent to
``list(combinations_with_replacement(iterable, r))[index]``.
The subsequences with repetition of *iterable* that are of length *r* can
be ordered lexicographically. :func:`nth_combination_with_replacement`
computes the subsequence at sort position *index* directly, without
computing the previous subsequences with replacement.
>>> nth_combination_with_replacement(range(5), 3, 5)
(0, 1, 1)
``ValueError`` will be raised If *r* is negative or greater than the length
of *iterable*.
``IndexError`` will be raised if the given *index* is invalid.
"""
pool = tuple(iterable)
n = len(pool)
if (r < 0) or (r > n):
raise ValueError
c = comb(n + r - 1, r)
if index < 0:
index += c
if (index < 0) or (index >= c):
raise IndexError
result = []
i = 0
while r:
r -= 1
while n >= 0:
num_combs = comb(n + r - 1, r)
if index < num_combs:
break
n -= 1
i += 1
index -= num_combs
result.append(pool[i])
return tuple(result)
def value_chain(*args):
"""Yield all arguments passed to the function in the same order in which
they were passed. If an argument itself is iterable then iterate over its
values.
>>> list(value_chain(1, 2, 3, [4, 5, 6]))
[1, 2, 3, 4, 5, 6]
Binary and text strings are not considered iterable and are emitted
as-is:
>>> list(value_chain('12', '34', ['56', '78']))
['12', '34', '56', '78']
Pre- or postpend a single element to an iterable:
>>> list(value_chain(1, [2, 3, 4, 5, 6]))
[1, 2, 3, 4, 5, 6]
>>> list(value_chain([1, 2, 3, 4, 5], 6))
[1, 2, 3, 4, 5, 6]
Multiple levels of nesting are not flattened.
"""
for value in args:
if isinstance(value, (str, bytes)):
yield value
continue
try:
yield from value
except TypeError:
yield value
def product_index(element, *args):
"""Equivalent to ``list(product(*args)).index(element)``
The products of *args* can be ordered lexicographically.
:func:`product_index` computes the first index of *element* without
computing the previous products.
>>> product_index([8, 2], range(10), range(5))
42
``ValueError`` will be raised if the given *element* isn't in the product
of *args*.
"""
index = 0
for x, pool in zip_longest(element, args, fillvalue=_marker):
if x is _marker or pool is _marker:
raise ValueError('element is not a product of args')
pool = tuple(pool)
index = index * len(pool) + pool.index(x)
return index
def combination_index(element, iterable):
"""Equivalent to ``list(combinations(iterable, r)).index(element)``
The subsequences of *iterable* that are of length *r* can be ordered
lexicographically. :func:`combination_index` computes the index of the
first *element*, without computing the previous combinations.
>>> combination_index('adf', 'abcdefg')
10
``ValueError`` will be raised if the given *element* isn't one of the
combinations of *iterable*.
"""
element = enumerate(element)
k, y = next(element, (None, None))
if k is None:
return 0
indexes = []
pool = enumerate(iterable)
for n, x in pool:
if x == y:
indexes.append(n)
tmp, y = next(element, (None, None))
if tmp is None:
break
else:
k = tmp
else:
raise ValueError('element is not a combination of iterable')
n, _ = last(pool, default=(n, None))
# Python versions below 3.8 don't have math.comb
index = 1
for i, j in enumerate(reversed(indexes), start=1):
j = n - j
if i <= j:
index += comb(j, i)
return comb(n + 1, k + 1) - index
def combination_with_replacement_index(element, iterable):
"""Equivalent to
``list(combinations_with_replacement(iterable, r)).index(element)``
The subsequences with repetition of *iterable* that are of length *r* can
be ordered lexicographically. :func:`combination_with_replacement_index`
computes the index of the first *element*, without computing the previous
combinations with replacement.
>>> combination_with_replacement_index('adf', 'abcdefg')
20
``ValueError`` will be raised if the given *element* isn't one of the
combinations with replacement of *iterable*.
"""
element = tuple(element)
l = len(element)
element = enumerate(element)
k, y = next(element, (None, None))
if k is None:
return 0
indexes = []
pool = tuple(iterable)
for n, x in enumerate(pool):
while x == y:
indexes.append(n)
tmp, y = next(element, (None, None))
if tmp is None:
break
else:
k = tmp
if y is None:
break
else:
raise ValueError(
'element is not a combination with replacement of iterable'
)
n = len(pool)
occupations = [0] * n
for p in indexes:
occupations[p] += 1
index = 0
cumulative_sum = 0
for k in range(1, n):
cumulative_sum += occupations[k - 1]
j = l + n - 1 - k - cumulative_sum
i = n - k
if i <= j:
index += comb(j, i)
return index
def permutation_index(element, iterable):
"""Equivalent to ``list(permutations(iterable, r)).index(element)```
The subsequences of *iterable* that are of length *r* where order is
important can be ordered lexicographically. :func:`permutation_index`
computes the index of the first *element* directly, without computing
the previous permutations.
>>> permutation_index([1, 3, 2], range(5))
19
``ValueError`` will be raised if the given *element* isn't one of the
permutations of *iterable*.
"""
index = 0
pool = list(iterable)
for i, x in zip(range(len(pool), -1, -1), element):
r = pool.index(x)
index = index * i + r
del pool[r]
return index
class countable:
"""Wrap *iterable* and keep a count of how many items have been consumed.
The ``items_seen`` attribute starts at ``0`` and increments as the iterable
is consumed:
>>> iterable = map(str, range(10))
>>> it = countable(iterable)
>>> it.items_seen
0
>>> next(it), next(it)
('0', '1')
>>> list(it)
['2', '3', '4', '5', '6', '7', '8', '9']
>>> it.items_seen
10
"""
def __init__(self, iterable):
self._it = iter(iterable)
self.items_seen = 0
def __iter__(self):
return self
def __next__(self):
item = next(self._it)
self.items_seen += 1
return item
def chunked_even(iterable, n):
"""Break *iterable* into lists of approximately length *n*.
Items are distributed such the lengths of the lists differ by at most
1 item.
>>> iterable = [1, 2, 3, 4, 5, 6, 7]
>>> n = 3
>>> list(chunked_even(iterable, n)) # List lengths: 3, 2, 2
[[1, 2, 3], [4, 5], [6, 7]]
>>> list(chunked(iterable, n)) # List lengths: 3, 3, 1
[[1, 2, 3], [4, 5, 6], [7]]
"""
iterable = iter(iterable)
# Initialize a buffer to process the chunks while keeping
# some back to fill any underfilled chunks
min_buffer = (n - 1) * (n - 2)
buffer = list(islice(iterable, min_buffer))
# Append items until we have a completed chunk
for _ in islice(map(buffer.append, iterable), n, None, n):
yield buffer[:n]
del buffer[:n]
# Check if any chunks need addition processing
if not buffer:
return
length = len(buffer)
# Chunks are either size `full_size <= n` or `partial_size = full_size - 1`
q, r = divmod(length, n)
num_lists = q + (1 if r > 0 else 0)
q, r = divmod(length, num_lists)
full_size = q + (1 if r > 0 else 0)
partial_size = full_size - 1
num_full = length - partial_size * num_lists
# Yield chunks of full size
partial_start_idx = num_full * full_size
if full_size > 0:
for i in range(0, partial_start_idx, full_size):
yield buffer[i : i + full_size]
# Yield chunks of partial size
if partial_size > 0:
for i in range(partial_start_idx, length, partial_size):
yield buffer[i : i + partial_size]
def zip_broadcast(*objects, scalar_types=(str, bytes), strict=False):
"""A version of :func:`zip` that "broadcasts" any scalar
(i.e., non-iterable) items into output tuples.
>>> iterable_1 = [1, 2, 3]
>>> iterable_2 = ['a', 'b', 'c']
>>> scalar = '_'
>>> list(zip_broadcast(iterable_1, iterable_2, scalar))
[(1, 'a', '_'), (2, 'b', '_'), (3, 'c', '_')]
The *scalar_types* keyword argument determines what types are considered
scalar. It is set to ``(str, bytes)`` by default. Set it to ``None`` to
treat strings and byte strings as iterable:
>>> list(zip_broadcast('abc', 0, 'xyz', scalar_types=None))
[('a', 0, 'x'), ('b', 0, 'y'), ('c', 0, 'z')]
If the *strict* keyword argument is ``True``, then
``UnequalIterablesError`` will be raised if any of the iterables have
different lengths.
"""
def is_scalar(obj):
if scalar_types and isinstance(obj, scalar_types):
return True
try:
iter(obj)
except TypeError:
return True
else:
return False
size = len(objects)
if not size:
return
new_item = [None] * size
iterables, iterable_positions = [], []
for i, obj in enumerate(objects):
if is_scalar(obj):
new_item[i] = obj
else:
iterables.append(iter(obj))
iterable_positions.append(i)
if not iterables:
yield tuple(objects)
return
zipper = _zip_equal if strict else zip
for item in zipper(*iterables):
for i, new_item[i] in zip(iterable_positions, item):
pass
yield tuple(new_item)
def unique_in_window(iterable, n, key=None):
"""Yield the items from *iterable* that haven't been seen recently.
*n* is the size of the lookback window.
>>> iterable = [0, 1, 0, 2, 3, 0]
>>> n = 3
>>> list(unique_in_window(iterable, n))
[0, 1, 2, 3, 0]
The *key* function, if provided, will be used to determine uniqueness:
>>> list(unique_in_window('abAcda', 3, key=lambda x: x.lower()))
['a', 'b', 'c', 'd', 'a']
The items in *iterable* must be hashable.
"""
if n <= 0:
raise ValueError('n must be greater than 0')
window = deque(maxlen=n)
counts = defaultdict(int)
use_key = key is not None
for item in iterable:
if len(window) == n:
to_discard = window[0]
if counts[to_discard] == 1:
del counts[to_discard]
else:
counts[to_discard] -= 1
k = key(item) if use_key else item
if k not in counts:
yield item
counts[k] += 1
window.append(k)
def duplicates_everseen(iterable, key=None):
"""Yield duplicate elements after their first appearance.
>>> list(duplicates_everseen('mississippi'))
['s', 'i', 's', 's', 'i', 'p', 'i']
>>> list(duplicates_everseen('AaaBbbCccAaa', str.lower))
['a', 'a', 'b', 'b', 'c', 'c', 'A', 'a', 'a']
This function is analogous to :func:`unique_everseen` and is subject to
the same performance considerations.
"""
seen_set = set()
seen_list = []
use_key = key is not None
for element in iterable:
k = key(element) if use_key else element
try:
if k not in seen_set:
seen_set.add(k)
else:
yield element
except TypeError:
if k not in seen_list:
seen_list.append(k)
else:
yield element
def duplicates_justseen(iterable, key=None):
"""Yields serially-duplicate elements after their first appearance.
>>> list(duplicates_justseen('mississippi'))
['s', 's', 'p']
>>> list(duplicates_justseen('AaaBbbCccAaa', str.lower))
['a', 'a', 'b', 'b', 'c', 'c', 'a', 'a']
This function is analogous to :func:`unique_justseen`.
"""
return flatten(g for _, g in groupby(iterable, key) for _ in g)
def classify_unique(iterable, key=None):
"""Classify each element in terms of its uniqueness.
For each element in the input iterable, return a 3-tuple consisting of:
1. The element itself
2. ``False`` if the element is equal to the one preceding it in the input,
``True`` otherwise (i.e. the equivalent of :func:`unique_justseen`)
3. ``False`` if this element has been seen anywhere in the input before,
``True`` otherwise (i.e. the equivalent of :func:`unique_everseen`)
>>> list(classify_unique('otto')) # doctest: +NORMALIZE_WHITESPACE
[('o', True, True),
('t', True, True),
('t', False, False),
('o', True, False)]
This function is analogous to :func:`unique_everseen` and is subject to
the same performance considerations.
"""
seen_set = set()
seen_list = []
use_key = key is not None
previous = None
for i, element in enumerate(iterable):
k = key(element) if use_key else element
is_unique_justseen = not i or previous != k
previous = k
is_unique_everseen = False
try:
if k not in seen_set:
seen_set.add(k)
is_unique_everseen = True
except TypeError:
if k not in seen_list:
seen_list.append(k)
is_unique_everseen = True
yield element, is_unique_justseen, is_unique_everseen
def minmax(iterable_or_value, *others, key=None, default=_marker):
"""Returns both the smallest and largest items in an iterable
or the largest of two or more arguments.
>>> minmax([3, 1, 5])
(1, 5)
>>> minmax(4, 2, 6)
(2, 6)
If a *key* function is provided, it will be used to transform the input
items for comparison.
>>> minmax([5, 30], key=str) # '30' sorts before '5'
(30, 5)
If a *default* value is provided, it will be returned if there are no
input items.
>>> minmax([], default=(0, 0))
(0, 0)
Otherwise ``ValueError`` is raised.
This function is based on the
`recipe <http://code.activestate.com/recipes/577916/>`__ by
Raymond Hettinger and takes care to minimize the number of comparisons
performed.
"""
iterable = (iterable_or_value, *others) if others else iterable_or_value
it = iter(iterable)
try:
lo = hi = next(it)
except StopIteration as exc:
if default is _marker:
raise ValueError(
'`minmax()` argument is an empty iterable. '
'Provide a `default` value to suppress this error.'
) from exc
return default
# Different branches depending on the presence of key. This saves a lot
# of unimportant copies which would slow the "key=None" branch
# significantly down.
if key is None:
for x, y in zip_longest(it, it, fillvalue=lo):
if y < x:
x, y = y, x
if x < lo:
lo = x
if hi < y:
hi = y
else:
lo_key = hi_key = key(lo)
for x, y in zip_longest(it, it, fillvalue=lo):
x_key, y_key = key(x), key(y)
if y_key < x_key:
x, y, x_key, y_key = y, x, y_key, x_key
if x_key < lo_key:
lo, lo_key = x, x_key
if hi_key < y_key:
hi, hi_key = y, y_key
return lo, hi
def constrained_batches(
iterable, max_size, max_count=None, get_len=len, strict=True
):
"""Yield batches of items from *iterable* with a combined size limited by
*max_size*.
>>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1']
>>> list(constrained_batches(iterable, 10))
[(b'12345', b'123'), (b'12345678', b'1', b'1'), (b'12', b'1')]
If a *max_count* is supplied, the number of items per batch is also
limited:
>>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1']
>>> list(constrained_batches(iterable, 10, max_count = 2))
[(b'12345', b'123'), (b'12345678', b'1'), (b'1', b'12'), (b'1',)]
If a *get_len* function is supplied, use that instead of :func:`len` to
determine item size.
If *strict* is ``True``, raise ``ValueError`` if any single item is bigger
than *max_size*. Otherwise, allow single items to exceed *max_size*.
"""
if max_size <= 0:
raise ValueError('maximum size must be greater than zero')
batch = []
batch_size = 0
batch_count = 0
for item in iterable:
item_len = get_len(item)
if strict and item_len > max_size:
raise ValueError('item size exceeds maximum size')
reached_count = batch_count == max_count
reached_size = item_len + batch_size > max_size
if batch_count and (reached_size or reached_count):
yield tuple(batch)
batch.clear()
batch_size = 0
batch_count = 0
batch.append(item)
batch_size += item_len
batch_count += 1
if batch:
yield tuple(batch)
def gray_product(*iterables):
"""Like :func:`itertools.product`, but return tuples in an order such
that only one element in the generated tuple changes from one iteration
to the next.
>>> list(gray_product('AB','CD'))
[('A', 'C'), ('B', 'C'), ('B', 'D'), ('A', 'D')]
This function consumes all of the input iterables before producing output.
If any of the input iterables have fewer than two items, ``ValueError``
is raised.
For information on the algorithm, see
`this section <https://www-cs-faculty.stanford.edu/~knuth/fasc2a.ps.gz>`__
of Donald Knuth's *The Art of Computer Programming*.
"""
all_iterables = tuple(tuple(x) for x in iterables)
iterable_count = len(all_iterables)
for iterable in all_iterables:
if len(iterable) < 2:
raise ValueError("each iterable must have two or more items")
# This is based on "Algorithm H" from section 7.2.1.1, page 20.
# a holds the indexes of the source iterables for the n-tuple to be yielded
# f is the array of "focus pointers"
# o is the array of "directions"
a = [0] * iterable_count
f = list(range(iterable_count + 1))
o = [1] * iterable_count
while True:
yield tuple(all_iterables[i][a[i]] for i in range(iterable_count))
j = f[0]
f[0] = 0
if j == iterable_count:
break
a[j] = a[j] + o[j]
if a[j] == 0 or a[j] == len(all_iterables[j]) - 1:
o[j] = -o[j]
f[j] = f[j + 1]
f[j + 1] = j + 1
def partial_product(*iterables):
"""Yields tuples containing one item from each iterator, with subsequent
tuples changing a single item at a time by advancing each iterator until it
is exhausted. This sequence guarantees every value in each iterable is
output at least once without generating all possible combinations.
This may be useful, for example, when testing an expensive function.
>>> list(partial_product('AB', 'C', 'DEF'))
[('A', 'C', 'D'), ('B', 'C', 'D'), ('B', 'C', 'E'), ('B', 'C', 'F')]
"""
iterators = list(map(iter, iterables))
try:
prod = [next(it) for it in iterators]
except StopIteration:
return
yield tuple(prod)
for i, it in enumerate(iterators):
for prod[i] in it:
yield tuple(prod)
def takewhile_inclusive(predicate, iterable):
"""A variant of :func:`takewhile` that yields one additional element.
>>> list(takewhile_inclusive(lambda x: x < 5, [1, 4, 6, 4, 1]))
[1, 4, 6]
:func:`takewhile` would return ``[1, 4]``.
"""
for x in iterable:
yield x
if not predicate(x):
break
def outer_product(func, xs, ys, *args, **kwargs):
"""A generalized outer product that applies a binary function to all
pairs of items. Returns a 2D matrix with ``len(xs)`` rows and ``len(ys)``
columns.
Also accepts ``*args`` and ``**kwargs`` that are passed to ``func``.
Multiplication table:
>>> list(outer_product(mul, range(1, 4), range(1, 6)))
[(1, 2, 3, 4, 5), (2, 4, 6, 8, 10), (3, 6, 9, 12, 15)]
Cross tabulation:
>>> xs = ['A', 'B', 'A', 'A', 'B', 'B', 'A', 'A', 'B', 'B']
>>> ys = ['X', 'X', 'X', 'Y', 'Z', 'Z', 'Y', 'Y', 'Z', 'Z']
>>> rows = list(zip(xs, ys))
>>> count_rows = lambda x, y: rows.count((x, y))
>>> list(outer_product(count_rows, sorted(set(xs)), sorted(set(ys))))
[(2, 3, 0), (1, 0, 4)]
Usage with ``*args`` and ``**kwargs``:
>>> animals = ['cat', 'wolf', 'mouse']
>>> list(outer_product(min, animals, animals, key=len))
[('cat', 'cat', 'cat'), ('cat', 'wolf', 'wolf'), ('cat', 'wolf', 'mouse')]
"""
ys = tuple(ys)
return batched(
starmap(lambda x, y: func(x, y, *args, **kwargs), product(xs, ys)),
n=len(ys),
)
def iter_suppress(iterable, *exceptions):
"""Yield each of the items from *iterable*. If the iteration raises one of
the specified *exceptions*, that exception will be suppressed and iteration
will stop.
>>> from itertools import chain
>>> def breaks_at_five(x):
... while True:
... if x >= 5:
... raise RuntimeError
... yield x
... x += 1
>>> it_1 = iter_suppress(breaks_at_five(1), RuntimeError)
>>> it_2 = iter_suppress(breaks_at_five(2), RuntimeError)
>>> list(chain(it_1, it_2))
[1, 2, 3, 4, 2, 3, 4]
"""
try:
yield from iterable
except exceptions:
return
def filter_map(func, iterable):
"""Apply *func* to every element of *iterable*, yielding only those which
are not ``None``.
>>> elems = ['1', 'a', '2', 'b', '3']
>>> list(filter_map(lambda s: int(s) if s.isnumeric() else None, elems))
[1, 2, 3]
"""
for x in iterable:
y = func(x)
if y is not None:
yield y
def powerset_of_sets(iterable):
"""Yields all possible subsets of the iterable.
>>> list(powerset_of_sets([1, 2, 3])) # doctest: +SKIP
[set(), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
>>> list(powerset_of_sets([1, 1, 0])) # doctest: +SKIP
[set(), {1}, {0}, {0, 1}]
:func:`powerset_of_sets` takes care to minimize the number
of hash operations performed.
"""
sets = tuple(map(set, dict.fromkeys(map(frozenset, zip(iterable)))))
for r in range(len(sets) + 1):
yield from starmap(set().union, combinations(sets, r))
def join_mappings(**field_to_map):
"""
Joins multiple mappings together using their common keys.
>>> user_scores = {'elliot': 50, 'claris': 60}
>>> user_times = {'elliot': 30, 'claris': 40}
>>> join_mappings(score=user_scores, time=user_times)
{'elliot': {'score': 50, 'time': 30}, 'claris': {'score': 60, 'time': 40}}
"""
ret = defaultdict(dict)
for field_name, mapping in field_to_map.items():
for key, value in mapping.items():
ret[key][field_name] = value
return dict(ret)
def _complex_sumprod(v1, v2):
"""High precision sumprod() for complex numbers.
Used by :func:`dft` and :func:`idft`.
"""
r1 = chain((p.real for p in v1), (-p.imag for p in v1))
r2 = chain((q.real for q in v2), (q.imag for q in v2))
i1 = chain((p.real for p in v1), (p.imag for p in v1))
i2 = chain((q.imag for q in v2), (q.real for q in v2))
return complex(_fsumprod(r1, r2), _fsumprod(i1, i2))
def dft(xarr):
"""Discrete Fourier Tranform. *xarr* is a sequence of complex numbers.
Yields the components of the corresponding transformed output vector.
>>> import cmath
>>> xarr = [1, 2-1j, -1j, -1+2j]
>>> Xarr = [2, -2-2j, -2j, 4+4j]
>>> all(map(cmath.isclose, dft(xarr), Xarr))
True
See :func:`idft` for the inverse Discrete Fourier Transform.
"""
N = len(xarr)
roots_of_unity = [e ** (n / N * tau * -1j) for n in range(N)]
for k in range(N):
coeffs = [roots_of_unity[k * n % N] for n in range(N)]
yield _complex_sumprod(xarr, coeffs)
def idft(Xarr):
"""Inverse Discrete Fourier Tranform. *Xarr* is a sequence of
complex numbers. Yields the components of the corresponding
inverse-transformed output vector.
>>> import cmath
>>> xarr = [1, 2-1j, -1j, -1+2j]
>>> Xarr = [2, -2-2j, -2j, 4+4j]
>>> all(map(cmath.isclose, idft(Xarr), xarr))
True
See :func:`dft` for the Discrete Fourier Transform.
"""
N = len(Xarr)
roots_of_unity = [e ** (n / N * tau * 1j) for n in range(N)]
for k in range(N):
coeffs = [roots_of_unity[k * n % N] for n in range(N)]
yield _complex_sumprod(Xarr, coeffs) / N
def doublestarmap(func, iterable):
"""Apply *func* to every item of *iterable* by dictionary unpacking
the item into *func*.
The difference between :func:`itertools.starmap` and :func:`doublestarmap`
parallels the distinction between ``func(*a)`` and ``func(**a)``.
>>> iterable = [{'a': 1, 'b': 2}, {'a': 40, 'b': 60}]
>>> list(doublestarmap(lambda a, b: a + b, iterable))
[3, 100]
``TypeError`` will be raised if *func*'s signature doesn't match the
mapping contained in *iterable* or if *iterable* does not contain mappings.
"""
for item in iterable:
yield func(**item)