Your IP : 52.15.190.187
# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
# For details: https://github.com/PyCQA/pylint/blob/main/LICENSE
# Copyright (c) https://github.com/PyCQA/pylint/blob/main/CONTRIBUTORS.txt
from __future__ import annotations
import functools
import warnings
from collections import defaultdict
from collections.abc import Iterable, Sequence
from typing import TYPE_CHECKING, Any
import dill
from pylint import reporters
from pylint.lint.utils import _augment_sys_path
from pylint.message import Message
from pylint.typing import FileItem
from pylint.utils import LinterStats, merge_stats
try:
import multiprocessing
except ImportError:
multiprocessing = None # type: ignore[assignment]
try:
from concurrent.futures import ProcessPoolExecutor
except ImportError:
ProcessPoolExecutor = None # type: ignore[assignment,misc]
if TYPE_CHECKING:
from pylint.lint import PyLinter
# PyLinter object used by worker processes when checking files using parallel mode
# should only be used by the worker processes
_worker_linter: PyLinter | None = None
def _worker_initialize(
linter: bytes, extra_packages_paths: Sequence[str] | None = None
) -> None:
"""Function called to initialize a worker for a Process within a concurrent Pool.
:param linter: A linter-class (PyLinter) instance pickled with dill
:param extra_packages_paths: Extra entries to be added to sys.path
"""
global _worker_linter # pylint: disable=global-statement
_worker_linter = dill.loads(linter)
assert _worker_linter
# On the worker process side the messages are just collected and passed back to
# parent process as _worker_check_file function's return value
_worker_linter.set_reporter(reporters.CollectingReporter())
_worker_linter.open()
if extra_packages_paths:
_augment_sys_path(extra_packages_paths)
def _worker_check_single_file(
file_item: FileItem,
) -> tuple[
int,
# TODO: 3.0: Make this only str after deprecation has been removed
str | None,
str,
str | None,
list[Message],
LinterStats,
int,
defaultdict[str, list[Any]],
]:
if not _worker_linter:
raise RuntimeError("Worker linter not yet initialised")
_worker_linter.open()
_worker_linter.check_single_file_item(file_item)
mapreduce_data = defaultdict(list)
for checker in _worker_linter.get_checkers():
data = checker.get_map_data()
if data is not None:
mapreduce_data[checker.name].append(data)
msgs = _worker_linter.reporter.messages
assert isinstance(_worker_linter.reporter, reporters.CollectingReporter)
_worker_linter.reporter.reset()
if _worker_linter.current_name is None:
warnings.warn(
(
"In pylint 3.0 the current_name attribute of the linter object should be a string. "
"If unknown it should be initialized as an empty string."
),
DeprecationWarning,
)
return (
id(multiprocessing.current_process()),
_worker_linter.current_name,
file_item.filepath,
_worker_linter.file_state.base_name,
msgs,
_worker_linter.stats,
_worker_linter.msg_status,
mapreduce_data,
)
def _merge_mapreduce_data(
linter: PyLinter,
all_mapreduce_data: defaultdict[int, list[defaultdict[str, list[Any]]]],
) -> None:
"""Merges map/reduce data across workers, invoking relevant APIs on checkers."""
# First collate the data and prepare it, so we can send it to the checkers for
# validation. The intent here is to collect all the mapreduce data for all checker-
# runs across processes - that will then be passed to a static method on the
# checkers to be reduced and further processed.
collated_map_reduce_data: defaultdict[str, list[Any]] = defaultdict(list)
for linter_data in all_mapreduce_data.values():
for run_data in linter_data:
for checker_name, data in run_data.items():
collated_map_reduce_data[checker_name].extend(data)
# Send the data to checkers that support/require consolidated data
original_checkers = linter.get_checkers()
for checker in original_checkers:
if checker.name in collated_map_reduce_data:
# Assume that if the check has returned map/reduce data that it has the
# reducer function
checker.reduce_map_data(linter, collated_map_reduce_data[checker.name])
def check_parallel(
linter: PyLinter,
jobs: int,
files: Iterable[FileItem],
extra_packages_paths: Sequence[str] | None = None,
) -> None:
"""Use the given linter to lint the files with given amount of workers (jobs).
This splits the work filestream-by-filestream. If you need to do work across
multiple files, as in the similarity-checker, then implement the map/reduce mixin functionality.
"""
# The linter is inherited by all the pool's workers, i.e. the linter
# is identical to the linter object here. This is required so that
# a custom PyLinter object can be used.
initializer = functools.partial(
_worker_initialize, extra_packages_paths=extra_packages_paths
)
with ProcessPoolExecutor(
max_workers=jobs, initializer=initializer, initargs=(dill.dumps(linter),)
) as executor:
linter.open()
all_stats = []
all_mapreduce_data: defaultdict[
int, list[defaultdict[str, list[Any]]]
] = defaultdict(list)
# Maps each file to be worked on by a single _worker_check_single_file() call,
# collecting any map/reduce data by checker module so that we can 'reduce' it
# later.
for (
worker_idx, # used to merge map/reduce data across workers
module,
file_path,
base_name,
messages,
stats,
msg_status,
mapreduce_data,
) in executor.map(_worker_check_single_file, files):
linter.file_state.base_name = base_name
linter.file_state._is_base_filestate = False
linter.set_current_module(module, file_path)
for msg in messages:
linter.reporter.handle_message(msg)
all_stats.append(stats)
all_mapreduce_data[worker_idx].append(mapreduce_data)
linter.msg_status |= msg_status
_merge_mapreduce_data(linter, all_mapreduce_data)
linter.stats = merge_stats([linter.stats] + all_stats)