Your IP : 3.145.153.251
"""
pygments.lexer
~~~~~~~~~~~~~~
Base lexer classes.
:copyright: Copyright 2006-2024 by the Pygments team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
import re
import sys
import time
from pip._vendor.pygments.filter import apply_filters, Filter
from pip._vendor.pygments.filters import get_filter_by_name
from pip._vendor.pygments.token import Error, Text, Other, Whitespace, _TokenType
from pip._vendor.pygments.util import get_bool_opt, get_int_opt, get_list_opt, \
make_analysator, Future, guess_decode
from pip._vendor.pygments.regexopt import regex_opt
__all__ = ['Lexer', 'RegexLexer', 'ExtendedRegexLexer', 'DelegatingLexer',
'LexerContext', 'include', 'inherit', 'bygroups', 'using', 'this',
'default', 'words', 'line_re']
line_re = re.compile('.*?\n')
_encoding_map = [(b'\xef\xbb\xbf', 'utf-8'),
(b'\xff\xfe\0\0', 'utf-32'),
(b'\0\0\xfe\xff', 'utf-32be'),
(b'\xff\xfe', 'utf-16'),
(b'\xfe\xff', 'utf-16be')]
_default_analyse = staticmethod(lambda x: 0.0)
class LexerMeta(type):
"""
This metaclass automagically converts ``analyse_text`` methods into
static methods which always return float values.
"""
def __new__(mcs, name, bases, d):
if 'analyse_text' in d:
d['analyse_text'] = make_analysator(d['analyse_text'])
return type.__new__(mcs, name, bases, d)
class Lexer(metaclass=LexerMeta):
"""
Lexer for a specific language.
See also :doc:`lexerdevelopment`, a high-level guide to writing
lexers.
Lexer classes have attributes used for choosing the most appropriate
lexer based on various criteria.
.. autoattribute:: name
:no-value:
.. autoattribute:: aliases
:no-value:
.. autoattribute:: filenames
:no-value:
.. autoattribute:: alias_filenames
.. autoattribute:: mimetypes
:no-value:
.. autoattribute:: priority
Lexers included in Pygments should have two additional attributes:
.. autoattribute:: url
:no-value:
.. autoattribute:: version_added
:no-value:
Lexers included in Pygments may have additional attributes:
.. autoattribute:: _example
:no-value:
You can pass options to the constructor. The basic options recognized
by all lexers and processed by the base `Lexer` class are:
``stripnl``
Strip leading and trailing newlines from the input (default: True).
``stripall``
Strip all leading and trailing whitespace from the input
(default: False).
``ensurenl``
Make sure that the input ends with a newline (default: True). This
is required for some lexers that consume input linewise.
.. versionadded:: 1.3
``tabsize``
If given and greater than 0, expand tabs in the input (default: 0).
``encoding``
If given, must be an encoding name. This encoding will be used to
convert the input string to Unicode, if it is not already a Unicode
string (default: ``'guess'``, which uses a simple UTF-8 / Locale /
Latin1 detection. Can also be ``'chardet'`` to use the chardet
library, if it is installed.
``inencoding``
Overrides the ``encoding`` if given.
"""
#: Full name of the lexer, in human-readable form
name = None
#: A list of short, unique identifiers that can be used to look
#: up the lexer from a list, e.g., using `get_lexer_by_name()`.
aliases = []
#: A list of `fnmatch` patterns that match filenames which contain
#: content for this lexer. The patterns in this list should be unique among
#: all lexers.
filenames = []
#: A list of `fnmatch` patterns that match filenames which may or may not
#: contain content for this lexer. This list is used by the
#: :func:`.guess_lexer_for_filename()` function, to determine which lexers
#: are then included in guessing the correct one. That means that
#: e.g. every lexer for HTML and a template language should include
#: ``\*.html`` in this list.
alias_filenames = []
#: A list of MIME types for content that can be lexed with this lexer.
mimetypes = []
#: Priority, should multiple lexers match and no content is provided
priority = 0
#: URL of the language specification/definition. Used in the Pygments
#: documentation. Set to an empty string to disable.
url = None
#: Version of Pygments in which the lexer was added.
version_added = None
#: Example file name. Relative to the ``tests/examplefiles`` directory.
#: This is used by the documentation generator to show an example.
_example = None
def __init__(self, **options):
"""
This constructor takes arbitrary options as keyword arguments.
Every subclass must first process its own options and then call
the `Lexer` constructor, since it processes the basic
options like `stripnl`.
An example looks like this:
.. sourcecode:: python
def __init__(self, **options):
self.compress = options.get('compress', '')
Lexer.__init__(self, **options)
As these options must all be specifiable as strings (due to the
command line usage), there are various utility functions
available to help with that, see `Utilities`_.
"""
self.options = options
self.stripnl = get_bool_opt(options, 'stripnl', True)
self.stripall = get_bool_opt(options, 'stripall', False)
self.ensurenl = get_bool_opt(options, 'ensurenl', True)
self.tabsize = get_int_opt(options, 'tabsize', 0)
self.encoding = options.get('encoding', 'guess')
self.encoding = options.get('inencoding') or self.encoding
self.filters = []
for filter_ in get_list_opt(options, 'filters', ()):
self.add_filter(filter_)
def __repr__(self):
if self.options:
return f'<pygments.lexers.{self.__class__.__name__} with {self.options!r}>'
else:
return f'<pygments.lexers.{self.__class__.__name__}>'
def add_filter(self, filter_, **options):
"""
Add a new stream filter to this lexer.
"""
if not isinstance(filter_, Filter):
filter_ = get_filter_by_name(filter_, **options)
self.filters.append(filter_)
def analyse_text(text):
"""
A static method which is called for lexer guessing.
It should analyse the text and return a float in the range
from ``0.0`` to ``1.0``. If it returns ``0.0``, the lexer
will not be selected as the most probable one, if it returns
``1.0``, it will be selected immediately. This is used by
`guess_lexer`.
The `LexerMeta` metaclass automatically wraps this function so
that it works like a static method (no ``self`` or ``cls``
parameter) and the return value is automatically converted to
`float`. If the return value is an object that is boolean `False`
it's the same as if the return values was ``0.0``.
"""
def _preprocess_lexer_input(self, text):
"""Apply preprocessing such as decoding the input, removing BOM and normalizing newlines."""
if not isinstance(text, str):
if self.encoding == 'guess':
text, _ = guess_decode(text)
elif self.encoding == 'chardet':
try:
# pip vendoring note: this code is not reachable by pip,
# removed import of chardet to make it clear.
raise ImportError('chardet is not vendored by pip')
except ImportError as e:
raise ImportError('To enable chardet encoding guessing, '
'please install the chardet library '
'from http://chardet.feedparser.org/') from e
# check for BOM first
decoded = None
for bom, encoding in _encoding_map:
if text.startswith(bom):
decoded = text[len(bom):].decode(encoding, 'replace')
break
# no BOM found, so use chardet
if decoded is None:
enc = chardet.detect(text[:1024]) # Guess using first 1KB
decoded = text.decode(enc.get('encoding') or 'utf-8',
'replace')
text = decoded
else:
text = text.decode(self.encoding)
if text.startswith('\ufeff'):
text = text[len('\ufeff'):]
else:
if text.startswith('\ufeff'):
text = text[len('\ufeff'):]
# text now *is* a unicode string
text = text.replace('\r\n', '\n')
text = text.replace('\r', '\n')
if self.stripall:
text = text.strip()
elif self.stripnl:
text = text.strip('\n')
if self.tabsize > 0:
text = text.expandtabs(self.tabsize)
if self.ensurenl and not text.endswith('\n'):
text += '\n'
return text
def get_tokens(self, text, unfiltered=False):
"""
This method is the basic interface of a lexer. It is called by
the `highlight()` function. It must process the text and return an
iterable of ``(tokentype, value)`` pairs from `text`.
Normally, you don't need to override this method. The default
implementation processes the options recognized by all lexers
(`stripnl`, `stripall` and so on), and then yields all tokens
from `get_tokens_unprocessed()`, with the ``index`` dropped.
If `unfiltered` is set to `True`, the filtering mechanism is
bypassed even if filters are defined.
"""
text = self._preprocess_lexer_input(text)
def streamer():
for _, t, v in self.get_tokens_unprocessed(text):
yield t, v
stream = streamer()
if not unfiltered:
stream = apply_filters(stream, self.filters, self)
return stream
def get_tokens_unprocessed(self, text):
"""
This method should process the text and return an iterable of
``(index, tokentype, value)`` tuples where ``index`` is the starting
position of the token within the input text.
It must be overridden by subclasses. It is recommended to
implement it as a generator to maximize effectiveness.
"""
raise NotImplementedError
class DelegatingLexer(Lexer):
"""
This lexer takes two lexer as arguments. A root lexer and
a language lexer. First everything is scanned using the language
lexer, afterwards all ``Other`` tokens are lexed using the root
lexer.
The lexers from the ``template`` lexer package use this base lexer.
"""
def __init__(self, _root_lexer, _language_lexer, _needle=Other, **options):
self.root_lexer = _root_lexer(**options)
self.language_lexer = _language_lexer(**options)
self.needle = _needle
Lexer.__init__(self, **options)
def get_tokens_unprocessed(self, text):
buffered = ''
insertions = []
lng_buffer = []
for i, t, v in self.language_lexer.get_tokens_unprocessed(text):
if t is self.needle:
if lng_buffer:
insertions.append((len(buffered), lng_buffer))
lng_buffer = []
buffered += v
else:
lng_buffer.append((i, t, v))
if lng_buffer:
insertions.append((len(buffered), lng_buffer))
return do_insertions(insertions,
self.root_lexer.get_tokens_unprocessed(buffered))
# ------------------------------------------------------------------------------
# RegexLexer and ExtendedRegexLexer
#
class include(str): # pylint: disable=invalid-name
"""
Indicates that a state should include rules from another state.
"""
pass
class _inherit:
"""
Indicates the a state should inherit from its superclass.
"""
def __repr__(self):
return 'inherit'
inherit = _inherit() # pylint: disable=invalid-name
class combined(tuple): # pylint: disable=invalid-name
"""
Indicates a state combined from multiple states.
"""
def __new__(cls, *args):
return tuple.__new__(cls, args)
def __init__(self, *args):
# tuple.__init__ doesn't do anything
pass
class _PseudoMatch:
"""
A pseudo match object constructed from a string.
"""
def __init__(self, start, text):
self._text = text
self._start = start
def start(self, arg=None):
return self._start
def end(self, arg=None):
return self._start + len(self._text)
def group(self, arg=None):
if arg:
raise IndexError('No such group')
return self._text
def groups(self):
return (self._text,)
def groupdict(self):
return {}
def bygroups(*args):
"""
Callback that yields multiple actions for each group in the match.
"""
def callback(lexer, match, ctx=None):
for i, action in enumerate(args):
if action is None:
continue
elif type(action) is _TokenType:
data = match.group(i + 1)
if data:
yield match.start(i + 1), action, data
else:
data = match.group(i + 1)
if data is not None:
if ctx:
ctx.pos = match.start(i + 1)
for item in action(lexer,
_PseudoMatch(match.start(i + 1), data), ctx):
if item:
yield item
if ctx:
ctx.pos = match.end()
return callback
class _This:
"""
Special singleton used for indicating the caller class.
Used by ``using``.
"""
this = _This()
def using(_other, **kwargs):
"""
Callback that processes the match with a different lexer.
The keyword arguments are forwarded to the lexer, except `state` which
is handled separately.
`state` specifies the state that the new lexer will start in, and can
be an enumerable such as ('root', 'inline', 'string') or a simple
string which is assumed to be on top of the root state.
Note: For that to work, `_other` must not be an `ExtendedRegexLexer`.
"""
gt_kwargs = {}
if 'state' in kwargs:
s = kwargs.pop('state')
if isinstance(s, (list, tuple)):
gt_kwargs['stack'] = s
else:
gt_kwargs['stack'] = ('root', s)
if _other is this:
def callback(lexer, match, ctx=None):
# if keyword arguments are given the callback
# function has to create a new lexer instance
if kwargs:
# XXX: cache that somehow
kwargs.update(lexer.options)
lx = lexer.__class__(**kwargs)
else:
lx = lexer
s = match.start()
for i, t, v in lx.get_tokens_unprocessed(match.group(), **gt_kwargs):
yield i + s, t, v
if ctx:
ctx.pos = match.end()
else:
def callback(lexer, match, ctx=None):
# XXX: cache that somehow
kwargs.update(lexer.options)
lx = _other(**kwargs)
s = match.start()
for i, t, v in lx.get_tokens_unprocessed(match.group(), **gt_kwargs):
yield i + s, t, v
if ctx:
ctx.pos = match.end()
return callback
class default:
"""
Indicates a state or state action (e.g. #pop) to apply.
For example default('#pop') is equivalent to ('', Token, '#pop')
Note that state tuples may be used as well.
.. versionadded:: 2.0
"""
def __init__(self, state):
self.state = state
class words(Future):
"""
Indicates a list of literal words that is transformed into an optimized
regex that matches any of the words.
.. versionadded:: 2.0
"""
def __init__(self, words, prefix='', suffix=''):
self.words = words
self.prefix = prefix
self.suffix = suffix
def get(self):
return regex_opt(self.words, prefix=self.prefix, suffix=self.suffix)
class RegexLexerMeta(LexerMeta):
"""
Metaclass for RegexLexer, creates the self._tokens attribute from
self.tokens on the first instantiation.
"""
def _process_regex(cls, regex, rflags, state):
"""Preprocess the regular expression component of a token definition."""
if isinstance(regex, Future):
regex = regex.get()
return re.compile(regex, rflags).match
def _process_token(cls, token):
"""Preprocess the token component of a token definition."""
assert type(token) is _TokenType or callable(token), \
f'token type must be simple type or callable, not {token!r}'
return token
def _process_new_state(cls, new_state, unprocessed, processed):
"""Preprocess the state transition action of a token definition."""
if isinstance(new_state, str):
# an existing state
if new_state == '#pop':
return -1
elif new_state in unprocessed:
return (new_state,)
elif new_state == '#push':
return new_state
elif new_state[:5] == '#pop:':
return -int(new_state[5:])
else:
assert False, f'unknown new state {new_state!r}'
elif isinstance(new_state, combined):
# combine a new state from existing ones
tmp_state = '_tmp_%d' % cls._tmpname
cls._tmpname += 1
itokens = []
for istate in new_state:
assert istate != new_state, f'circular state ref {istate!r}'
itokens.extend(cls._process_state(unprocessed,
processed, istate))
processed[tmp_state] = itokens
return (tmp_state,)
elif isinstance(new_state, tuple):
# push more than one state
for istate in new_state:
assert (istate in unprocessed or
istate in ('#pop', '#push')), \
'unknown new state ' + istate
return new_state
else:
assert False, f'unknown new state def {new_state!r}'
def _process_state(cls, unprocessed, processed, state):
"""Preprocess a single state definition."""
assert isinstance(state, str), f"wrong state name {state!r}"
assert state[0] != '#', f"invalid state name {state!r}"
if state in processed:
return processed[state]
tokens = processed[state] = []
rflags = cls.flags
for tdef in unprocessed[state]:
if isinstance(tdef, include):
# it's a state reference
assert tdef != state, f"circular state reference {state!r}"
tokens.extend(cls._process_state(unprocessed, processed,
str(tdef)))
continue
if isinstance(tdef, _inherit):
# should be processed already, but may not in the case of:
# 1. the state has no counterpart in any parent
# 2. the state includes more than one 'inherit'
continue
if isinstance(tdef, default):
new_state = cls._process_new_state(tdef.state, unprocessed, processed)
tokens.append((re.compile('').match, None, new_state))
continue
assert type(tdef) is tuple, f"wrong rule def {tdef!r}"
try:
rex = cls._process_regex(tdef[0], rflags, state)
except Exception as err:
raise ValueError(f"uncompilable regex {tdef[0]!r} in state {state!r} of {cls!r}: {err}") from err
token = cls._process_token(tdef[1])
if len(tdef) == 2:
new_state = None
else:
new_state = cls._process_new_state(tdef[2],
unprocessed, processed)
tokens.append((rex, token, new_state))
return tokens
def process_tokendef(cls, name, tokendefs=None):
"""Preprocess a dictionary of token definitions."""
processed = cls._all_tokens[name] = {}
tokendefs = tokendefs or cls.tokens[name]
for state in list(tokendefs):
cls._process_state(tokendefs, processed, state)
return processed
def get_tokendefs(cls):
"""
Merge tokens from superclasses in MRO order, returning a single tokendef
dictionary.
Any state that is not defined by a subclass will be inherited
automatically. States that *are* defined by subclasses will, by
default, override that state in the superclass. If a subclass wishes to
inherit definitions from a superclass, it can use the special value
"inherit", which will cause the superclass' state definition to be
included at that point in the state.
"""
tokens = {}
inheritable = {}
for c in cls.__mro__:
toks = c.__dict__.get('tokens', {})
for state, items in toks.items():
curitems = tokens.get(state)
if curitems is None:
# N.b. because this is assigned by reference, sufficiently
# deep hierarchies are processed incrementally (e.g. for
# A(B), B(C), C(RegexLexer), B will be premodified so X(B)
# will not see any inherits in B).
tokens[state] = items
try:
inherit_ndx = items.index(inherit)
except ValueError:
continue
inheritable[state] = inherit_ndx
continue
inherit_ndx = inheritable.pop(state, None)
if inherit_ndx is None:
continue
# Replace the "inherit" value with the items
curitems[inherit_ndx:inherit_ndx+1] = items
try:
# N.b. this is the index in items (that is, the superclass
# copy), so offset required when storing below.
new_inh_ndx = items.index(inherit)
except ValueError:
pass
else:
inheritable[state] = inherit_ndx + new_inh_ndx
return tokens
def __call__(cls, *args, **kwds):
"""Instantiate cls after preprocessing its token definitions."""
if '_tokens' not in cls.__dict__:
cls._all_tokens = {}
cls._tmpname = 0
if hasattr(cls, 'token_variants') and cls.token_variants:
# don't process yet
pass
else:
cls._tokens = cls.process_tokendef('', cls.get_tokendefs())
return type.__call__(cls, *args, **kwds)
class RegexLexer(Lexer, metaclass=RegexLexerMeta):
"""
Base for simple stateful regular expression-based lexers.
Simplifies the lexing process so that you need only
provide a list of states and regular expressions.
"""
#: Flags for compiling the regular expressions.
#: Defaults to MULTILINE.
flags = re.MULTILINE
#: At all time there is a stack of states. Initially, the stack contains
#: a single state 'root'. The top of the stack is called "the current state".
#:
#: Dict of ``{'state': [(regex, tokentype, new_state), ...], ...}``
#:
#: ``new_state`` can be omitted to signify no state transition.
#: If ``new_state`` is a string, it is pushed on the stack. This ensure
#: the new current state is ``new_state``.
#: If ``new_state`` is a tuple of strings, all of those strings are pushed
#: on the stack and the current state will be the last element of the list.
#: ``new_state`` can also be ``combined('state1', 'state2', ...)``
#: to signify a new, anonymous state combined from the rules of two
#: or more existing ones.
#: Furthermore, it can be '#pop' to signify going back one step in
#: the state stack, or '#push' to push the current state on the stack
#: again. Note that if you push while in a combined state, the combined
#: state itself is pushed, and not only the state in which the rule is
#: defined.
#:
#: The tuple can also be replaced with ``include('state')``, in which
#: case the rules from the state named by the string are included in the
#: current one.
tokens = {}
def get_tokens_unprocessed(self, text, stack=('root',)):
"""
Split ``text`` into (tokentype, text) pairs.
``stack`` is the initial stack (default: ``['root']``)
"""
pos = 0
tokendefs = self._tokens
statestack = list(stack)
statetokens = tokendefs[statestack[-1]]
while 1:
for rexmatch, action, new_state in statetokens:
m = rexmatch(text, pos)
if m:
if action is not None:
if type(action) is _TokenType:
yield pos, action, m.group()
else:
yield from action(self, m)
pos = m.end()
if new_state is not None:
# state transition
if isinstance(new_state, tuple):
for state in new_state:
if state == '#pop':
if len(statestack) > 1:
statestack.pop()
elif state == '#push':
statestack.append(statestack[-1])
else:
statestack.append(state)
elif isinstance(new_state, int):
# pop, but keep at least one state on the stack
# (random code leading to unexpected pops should
# not allow exceptions)
if abs(new_state) >= len(statestack):
del statestack[1:]
else:
del statestack[new_state:]
elif new_state == '#push':
statestack.append(statestack[-1])
else:
assert False, f"wrong state def: {new_state!r}"
statetokens = tokendefs[statestack[-1]]
break
else:
# We are here only if all state tokens have been considered
# and there was not a match on any of them.
try:
if text[pos] == '\n':
# at EOL, reset state to "root"
statestack = ['root']
statetokens = tokendefs['root']
yield pos, Whitespace, '\n'
pos += 1
continue
yield pos, Error, text[pos]
pos += 1
except IndexError:
break
class LexerContext:
"""
A helper object that holds lexer position data.
"""
def __init__(self, text, pos, stack=None, end=None):
self.text = text
self.pos = pos
self.end = end or len(text) # end=0 not supported ;-)
self.stack = stack or ['root']
def __repr__(self):
return f'LexerContext({self.text!r}, {self.pos!r}, {self.stack!r})'
class ExtendedRegexLexer(RegexLexer):
"""
A RegexLexer that uses a context object to store its state.
"""
def get_tokens_unprocessed(self, text=None, context=None):
"""
Split ``text`` into (tokentype, text) pairs.
If ``context`` is given, use this lexer context instead.
"""
tokendefs = self._tokens
if not context:
ctx = LexerContext(text, 0)
statetokens = tokendefs['root']
else:
ctx = context
statetokens = tokendefs[ctx.stack[-1]]
text = ctx.text
while 1:
for rexmatch, action, new_state in statetokens:
m = rexmatch(text, ctx.pos, ctx.end)
if m:
if action is not None:
if type(action) is _TokenType:
yield ctx.pos, action, m.group()
ctx.pos = m.end()
else:
yield from action(self, m, ctx)
if not new_state:
# altered the state stack?
statetokens = tokendefs[ctx.stack[-1]]
# CAUTION: callback must set ctx.pos!
if new_state is not None:
# state transition
if isinstance(new_state, tuple):
for state in new_state:
if state == '#pop':
if len(ctx.stack) > 1:
ctx.stack.pop()
elif state == '#push':
ctx.stack.append(ctx.stack[-1])
else:
ctx.stack.append(state)
elif isinstance(new_state, int):
# see RegexLexer for why this check is made
if abs(new_state) >= len(ctx.stack):
del ctx.stack[1:]
else:
del ctx.stack[new_state:]
elif new_state == '#push':
ctx.stack.append(ctx.stack[-1])
else:
assert False, f"wrong state def: {new_state!r}"
statetokens = tokendefs[ctx.stack[-1]]
break
else:
try:
if ctx.pos >= ctx.end:
break
if text[ctx.pos] == '\n':
# at EOL, reset state to "root"
ctx.stack = ['root']
statetokens = tokendefs['root']
yield ctx.pos, Text, '\n'
ctx.pos += 1
continue
yield ctx.pos, Error, text[ctx.pos]
ctx.pos += 1
except IndexError:
break
def do_insertions(insertions, tokens):
"""
Helper for lexers which must combine the results of several
sublexers.
``insertions`` is a list of ``(index, itokens)`` pairs.
Each ``itokens`` iterable should be inserted at position
``index`` into the token stream given by the ``tokens``
argument.
The result is a combined token stream.
TODO: clean up the code here.
"""
insertions = iter(insertions)
try:
index, itokens = next(insertions)
except StopIteration:
# no insertions
yield from tokens
return
realpos = None
insleft = True
# iterate over the token stream where we want to insert
# the tokens from the insertion list.
for i, t, v in tokens:
# first iteration. store the position of first item
if realpos is None:
realpos = i
oldi = 0
while insleft and i + len(v) >= index:
tmpval = v[oldi:index - i]
if tmpval:
yield realpos, t, tmpval
realpos += len(tmpval)
for it_index, it_token, it_value in itokens:
yield realpos, it_token, it_value
realpos += len(it_value)
oldi = index - i
try:
index, itokens = next(insertions)
except StopIteration:
insleft = False
break # not strictly necessary
if oldi < len(v):
yield realpos, t, v[oldi:]
realpos += len(v) - oldi
# leftover tokens
while insleft:
# no normal tokens, set realpos to zero
realpos = realpos or 0
for p, t, v in itokens:
yield realpos, t, v
realpos += len(v)
try:
index, itokens = next(insertions)
except StopIteration:
insleft = False
break # not strictly necessary
class ProfilingRegexLexerMeta(RegexLexerMeta):
"""Metaclass for ProfilingRegexLexer, collects regex timing info."""
def _process_regex(cls, regex, rflags, state):
if isinstance(regex, words):
rex = regex_opt(regex.words, prefix=regex.prefix,
suffix=regex.suffix)
else:
rex = regex
compiled = re.compile(rex, rflags)
def match_func(text, pos, endpos=sys.maxsize):
info = cls._prof_data[-1].setdefault((state, rex), [0, 0.0])
t0 = time.time()
res = compiled.match(text, pos, endpos)
t1 = time.time()
info[0] += 1
info[1] += t1 - t0
return res
return match_func
class ProfilingRegexLexer(RegexLexer, metaclass=ProfilingRegexLexerMeta):
"""Drop-in replacement for RegexLexer that does profiling of its regexes."""
_prof_data = []
_prof_sort_index = 4 # defaults to time per call
def get_tokens_unprocessed(self, text, stack=('root',)):
# this needs to be a stack, since using(this) will produce nested calls
self.__class__._prof_data.append({})
yield from RegexLexer.get_tokens_unprocessed(self, text, stack)
rawdata = self.__class__._prof_data.pop()
data = sorted(((s, repr(r).strip('u\'').replace('\\\\', '\\')[:65],
n, 1000 * t, 1000 * t / n)
for ((s, r), (n, t)) in rawdata.items()),
key=lambda x: x[self._prof_sort_index],
reverse=True)
sum_total = sum(x[3] for x in data)
print()
print('Profiling result for %s lexing %d chars in %.3f ms' %
(self.__class__.__name__, len(text), sum_total))
print('=' * 110)
print('%-20s %-64s ncalls tottime percall' % ('state', 'regex'))
print('-' * 110)
for d in data:
print('%-20s %-65s %5d %8.4f %8.4f' % d)
print('=' * 110)