Your IP : 3.145.55.25
import hashlib
import pickle
import sys
import warnings
import numpy as np
import pytest
from numpy.testing import (
assert_, assert_raises, assert_equal, assert_warns,
assert_no_warnings, assert_array_equal, assert_array_almost_equal,
suppress_warnings, IS_WASM
)
from numpy.random import MT19937, PCG64
from numpy import random
INT_FUNCS = {'binomial': (100.0, 0.6),
'geometric': (.5,),
'hypergeometric': (20, 20, 10),
'logseries': (.5,),
'multinomial': (20, np.ones(6) / 6.0),
'negative_binomial': (100, .5),
'poisson': (10.0,),
'zipf': (2,),
}
if np.iinfo(int).max < 2**32:
# Windows and some 32-bit platforms, e.g., ARM
INT_FUNC_HASHES = {'binomial': '2fbead005fc63942decb5326d36a1f32fe2c9d32c904ee61e46866b88447c263',
'logseries': '23ead5dcde35d4cfd4ef2c105e4c3d43304b45dc1b1444b7823b9ee4fa144ebb',
'geometric': '0d764db64f5c3bad48c8c33551c13b4d07a1e7b470f77629bef6c985cac76fcf',
'hypergeometric': '7b59bf2f1691626c5815cdcd9a49e1dd68697251d4521575219e4d2a1b8b2c67',
'multinomial': 'd754fa5b92943a38ec07630de92362dd2e02c43577fc147417dc5b9db94ccdd3',
'negative_binomial': '8eb216f7cb2a63cf55605422845caaff002fddc64a7dc8b2d45acd477a49e824',
'poisson': '70c891d76104013ebd6f6bcf30d403a9074b886ff62e4e6b8eb605bf1a4673b7',
'zipf': '01f074f97517cd5d21747148ac6ca4074dde7fcb7acbaec0a936606fecacd93f',
}
else:
INT_FUNC_HASHES = {'binomial': '8626dd9d052cb608e93d8868de0a7b347258b199493871a1dc56e2a26cacb112',
'geometric': '8edd53d272e49c4fc8fbbe6c7d08d563d62e482921f3131d0a0e068af30f0db9',
'hypergeometric': '83496cc4281c77b786c9b7ad88b74d42e01603a55c60577ebab81c3ba8d45657',
'logseries': '65878a38747c176bc00e930ebafebb69d4e1e16cd3a704e264ea8f5e24f548db',
'multinomial': '7a984ae6dca26fd25374479e118b22f55db0aedccd5a0f2584ceada33db98605',
'negative_binomial': 'd636d968e6a24ae92ab52fe11c46ac45b0897e98714426764e820a7d77602a61',
'poisson': '956552176f77e7c9cb20d0118fc9cf690be488d790ed4b4c4747b965e61b0bb4',
'zipf': 'f84ba7feffda41e606e20b28dfc0f1ea9964a74574513d4a4cbc98433a8bfa45',
}
@pytest.fixture(scope='module', params=INT_FUNCS)
def int_func(request):
return (request.param, INT_FUNCS[request.param],
INT_FUNC_HASHES[request.param])
@pytest.fixture
def restore_singleton_bitgen():
"""Ensures that the singleton bitgen is restored after a test"""
orig_bitgen = np.random.get_bit_generator()
yield
np.random.set_bit_generator(orig_bitgen)
def assert_mt19937_state_equal(a, b):
assert_equal(a['bit_generator'], b['bit_generator'])
assert_array_equal(a['state']['key'], b['state']['key'])
assert_array_equal(a['state']['pos'], b['state']['pos'])
assert_equal(a['has_gauss'], b['has_gauss'])
assert_equal(a['gauss'], b['gauss'])
class TestSeed:
def test_scalar(self):
s = random.RandomState(0)
assert_equal(s.randint(1000), 684)
s = random.RandomState(4294967295)
assert_equal(s.randint(1000), 419)
def test_array(self):
s = random.RandomState(range(10))
assert_equal(s.randint(1000), 468)
s = random.RandomState(np.arange(10))
assert_equal(s.randint(1000), 468)
s = random.RandomState([0])
assert_equal(s.randint(1000), 973)
s = random.RandomState([4294967295])
assert_equal(s.randint(1000), 265)
def test_invalid_scalar(self):
# seed must be an unsigned 32 bit integer
assert_raises(TypeError, random.RandomState, -0.5)
assert_raises(ValueError, random.RandomState, -1)
def test_invalid_array(self):
# seed must be an unsigned 32 bit integer
assert_raises(TypeError, random.RandomState, [-0.5])
assert_raises(ValueError, random.RandomState, [-1])
assert_raises(ValueError, random.RandomState, [4294967296])
assert_raises(ValueError, random.RandomState, [1, 2, 4294967296])
assert_raises(ValueError, random.RandomState, [1, -2, 4294967296])
def test_invalid_array_shape(self):
# gh-9832
assert_raises(ValueError, random.RandomState, np.array([],
dtype=np.int64))
assert_raises(ValueError, random.RandomState, [[1, 2, 3]])
assert_raises(ValueError, random.RandomState, [[1, 2, 3],
[4, 5, 6]])
def test_cannot_seed(self):
rs = random.RandomState(PCG64(0))
with assert_raises(TypeError):
rs.seed(1234)
def test_invalid_initialization(self):
assert_raises(ValueError, random.RandomState, MT19937)
class TestBinomial:
def test_n_zero(self):
# Tests the corner case of n == 0 for the binomial distribution.
# binomial(0, p) should be zero for any p in [0, 1].
# This test addresses issue #3480.
zeros = np.zeros(2, dtype='int')
for p in [0, .5, 1]:
assert_(random.binomial(0, p) == 0)
assert_array_equal(random.binomial(zeros, p), zeros)
def test_p_is_nan(self):
# Issue #4571.
assert_raises(ValueError, random.binomial, 1, np.nan)
class TestMultinomial:
def test_basic(self):
random.multinomial(100, [0.2, 0.8])
def test_zero_probability(self):
random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
def test_int_negative_interval(self):
assert_(-5 <= random.randint(-5, -1) < -1)
x = random.randint(-5, -1, 5)
assert_(np.all(-5 <= x))
assert_(np.all(x < -1))
def test_size(self):
# gh-3173
p = [0.5, 0.5]
assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
(2, 2, 2))
assert_raises(TypeError, random.multinomial, 1, p,
float(1))
def test_invalid_prob(self):
assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
def test_invalid_n(self):
assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
def test_p_non_contiguous(self):
p = np.arange(15.)
p /= np.sum(p[1::3])
pvals = p[1::3]
random.seed(1432985819)
non_contig = random.multinomial(100, pvals=pvals)
random.seed(1432985819)
contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
assert_array_equal(non_contig, contig)
def test_multinomial_pvals_float32(self):
x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09,
1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32)
pvals = x / x.sum()
match = r"[\w\s]*pvals array is cast to 64-bit floating"
with pytest.raises(ValueError, match=match):
random.multinomial(1, pvals)
class TestSetState:
def setup_method(self):
self.seed = 1234567890
self.random_state = random.RandomState(self.seed)
self.state = self.random_state.get_state()
def test_basic(self):
old = self.random_state.tomaxint(16)
self.random_state.set_state(self.state)
new = self.random_state.tomaxint(16)
assert_(np.all(old == new))
def test_gaussian_reset(self):
# Make sure the cached every-other-Gaussian is reset.
old = self.random_state.standard_normal(size=3)
self.random_state.set_state(self.state)
new = self.random_state.standard_normal(size=3)
assert_(np.all(old == new))
def test_gaussian_reset_in_media_res(self):
# When the state is saved with a cached Gaussian, make sure the
# cached Gaussian is restored.
self.random_state.standard_normal()
state = self.random_state.get_state()
old = self.random_state.standard_normal(size=3)
self.random_state.set_state(state)
new = self.random_state.standard_normal(size=3)
assert_(np.all(old == new))
def test_backwards_compatibility(self):
# Make sure we can accept old state tuples that do not have the
# cached Gaussian value.
old_state = self.state[:-2]
x1 = self.random_state.standard_normal(size=16)
self.random_state.set_state(old_state)
x2 = self.random_state.standard_normal(size=16)
self.random_state.set_state(self.state)
x3 = self.random_state.standard_normal(size=16)
assert_(np.all(x1 == x2))
assert_(np.all(x1 == x3))
def test_negative_binomial(self):
# Ensure that the negative binomial results take floating point
# arguments without truncation.
self.random_state.negative_binomial(0.5, 0.5)
def test_get_state_warning(self):
rs = random.RandomState(PCG64())
with suppress_warnings() as sup:
w = sup.record(RuntimeWarning)
state = rs.get_state()
assert_(len(w) == 1)
assert isinstance(state, dict)
assert state['bit_generator'] == 'PCG64'
def test_invalid_legacy_state_setting(self):
state = self.random_state.get_state()
new_state = ('Unknown', ) + state[1:]
assert_raises(ValueError, self.random_state.set_state, new_state)
assert_raises(TypeError, self.random_state.set_state,
np.array(new_state, dtype=object))
state = self.random_state.get_state(legacy=False)
del state['bit_generator']
assert_raises(ValueError, self.random_state.set_state, state)
def test_pickle(self):
self.random_state.seed(0)
self.random_state.random_sample(100)
self.random_state.standard_normal()
pickled = self.random_state.get_state(legacy=False)
assert_equal(pickled['has_gauss'], 1)
rs_unpick = pickle.loads(pickle.dumps(self.random_state))
unpickled = rs_unpick.get_state(legacy=False)
assert_mt19937_state_equal(pickled, unpickled)
def test_state_setting(self):
attr_state = self.random_state.__getstate__()
self.random_state.standard_normal()
self.random_state.__setstate__(attr_state)
state = self.random_state.get_state(legacy=False)
assert_mt19937_state_equal(attr_state, state)
def test_repr(self):
assert repr(self.random_state).startswith('RandomState(MT19937)')
class TestRandint:
rfunc = random.randint
# valid integer/boolean types
itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
np.int32, np.uint32, np.int64, np.uint64]
def test_unsupported_type(self):
assert_raises(TypeError, self.rfunc, 1, dtype=float)
def test_bounds_checking(self):
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
def test_rng_zero_and_extremes(self):
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
tgt = ubnd - 1
assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
tgt = lbnd
assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
tgt = (lbnd + ubnd)//2
assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
def test_full_range(self):
# Test for ticket #1690
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
try:
self.rfunc(lbnd, ubnd, dtype=dt)
except Exception as e:
raise AssertionError("No error should have been raised, "
"but one was with the following "
"message:\n\n%s" % str(e))
def test_in_bounds_fuzz(self):
# Don't use fixed seed
random.seed()
for dt in self.itype[1:]:
for ubnd in [4, 8, 16]:
vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
assert_(vals.max() < ubnd)
assert_(vals.min() >= 2)
vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_)
assert_(vals.max() < 2)
assert_(vals.min() >= 0)
def test_repeatability(self):
# We use a sha256 hash of generated sequences of 1000 samples
# in the range [0, 6) for all but bool, where the range
# is [0, 2). Hashes are for little endian numbers.
tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71',
'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404',
'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'}
for dt in self.itype[1:]:
random.seed(1234)
# view as little endian for hash
if sys.byteorder == 'little':
val = self.rfunc(0, 6, size=1000, dtype=dt)
else:
val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
res = hashlib.sha256(val.view(np.int8)).hexdigest()
assert_(tgt[np.dtype(dt).name] == res)
# bools do not depend on endianness
random.seed(1234)
val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
res = hashlib.sha256(val).hexdigest()
assert_(tgt[np.dtype(bool).name] == res)
@pytest.mark.skipif(np.iinfo('l').max < 2**32,
reason='Cannot test with 32-bit C long')
def test_repeatability_32bit_boundary_broadcasting(self):
desired = np.array([[[3992670689, 2438360420, 2557845020],
[4107320065, 4142558326, 3216529513],
[1605979228, 2807061240, 665605495]],
[[3211410639, 4128781000, 457175120],
[1712592594, 1282922662, 3081439808],
[3997822960, 2008322436, 1563495165]],
[[1398375547, 4269260146, 115316740],
[3414372578, 3437564012, 2112038651],
[3572980305, 2260248732, 3908238631]],
[[2561372503, 223155946, 3127879445],
[ 441282060, 3514786552, 2148440361],
[1629275283, 3479737011, 3003195987]],
[[ 412181688, 940383289, 3047321305],
[2978368172, 764731833, 2282559898],
[ 105711276, 720447391, 3596512484]]])
for size in [None, (5, 3, 3)]:
random.seed(12345)
x = self.rfunc([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1],
size=size)
assert_array_equal(x, desired if size is not None else desired[0])
def test_int64_uint64_corner_case(self):
# When stored in Numpy arrays, `lbnd` is casted
# as np.int64, and `ubnd` is casted as np.uint64.
# Checking whether `lbnd` >= `ubnd` used to be
# done solely via direct comparison, which is incorrect
# because when Numpy tries to compare both numbers,
# it casts both to np.float64 because there is
# no integer superset of np.int64 and np.uint64. However,
# `ubnd` is too large to be represented in np.float64,
# causing it be round down to np.iinfo(np.int64).max,
# leading to a ValueError because `lbnd` now equals
# the new `ubnd`.
dt = np.int64
tgt = np.iinfo(np.int64).max
lbnd = np.int64(np.iinfo(np.int64).max)
ubnd = np.uint64(np.iinfo(np.int64).max + 1)
# None of these function calls should
# generate a ValueError now.
actual = random.randint(lbnd, ubnd, dtype=dt)
assert_equal(actual, tgt)
def test_respect_dtype_singleton(self):
# See gh-7203
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_equal(sample.dtype, np.dtype(dt))
for dt in (bool, int, np.compat.long):
lbnd = 0 if dt is bool else np.iinfo(dt).min
ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
# gh-7284: Ensure that we get Python data types
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_(not hasattr(sample, 'dtype'))
assert_equal(type(sample), dt)
class TestRandomDist:
# Make sure the random distribution returns the correct value for a
# given seed
def setup_method(self):
self.seed = 1234567890
def test_rand(self):
random.seed(self.seed)
actual = random.rand(3, 2)
desired = np.array([[0.61879477158567997, 0.59162362775974664],
[0.88868358904449662, 0.89165480011560816],
[0.4575674820298663, 0.7781880808593471]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_rand_singleton(self):
random.seed(self.seed)
actual = random.rand()
desired = 0.61879477158567997
assert_array_almost_equal(actual, desired, decimal=15)
def test_randn(self):
random.seed(self.seed)
actual = random.randn(3, 2)
desired = np.array([[1.34016345771863121, 1.73759122771936081],
[1.498988344300628, -0.2286433324536169],
[2.031033998682787, 2.17032494605655257]])
assert_array_almost_equal(actual, desired, decimal=15)
random.seed(self.seed)
actual = random.randn()
assert_array_almost_equal(actual, desired[0, 0], decimal=15)
def test_randint(self):
random.seed(self.seed)
actual = random.randint(-99, 99, size=(3, 2))
desired = np.array([[31, 3],
[-52, 41],
[-48, -66]])
assert_array_equal(actual, desired)
def test_random_integers(self):
random.seed(self.seed)
with suppress_warnings() as sup:
w = sup.record(DeprecationWarning)
actual = random.random_integers(-99, 99, size=(3, 2))
assert_(len(w) == 1)
desired = np.array([[31, 3],
[-52, 41],
[-48, -66]])
assert_array_equal(actual, desired)
random.seed(self.seed)
with suppress_warnings() as sup:
w = sup.record(DeprecationWarning)
actual = random.random_integers(198, size=(3, 2))
assert_(len(w) == 1)
assert_array_equal(actual, desired + 100)
def test_tomaxint(self):
random.seed(self.seed)
rs = random.RandomState(self.seed)
actual = rs.tomaxint(size=(3, 2))
if np.iinfo(int).max == 2147483647:
desired = np.array([[1328851649, 731237375],
[1270502067, 320041495],
[1908433478, 499156889]], dtype=np.int64)
else:
desired = np.array([[5707374374421908479, 5456764827585442327],
[8196659375100692377, 8224063923314595285],
[4220315081820346526, 7177518203184491332]],
dtype=np.int64)
assert_equal(actual, desired)
rs.seed(self.seed)
actual = rs.tomaxint()
assert_equal(actual, desired[0, 0])
def test_random_integers_max_int(self):
# Tests whether random_integers can generate the
# maximum allowed Python int that can be converted
# into a C long. Previous implementations of this
# method have thrown an OverflowError when attempting
# to generate this integer.
with suppress_warnings() as sup:
w = sup.record(DeprecationWarning)
actual = random.random_integers(np.iinfo('l').max,
np.iinfo('l').max)
assert_(len(w) == 1)
desired = np.iinfo('l').max
assert_equal(actual, desired)
with suppress_warnings() as sup:
w = sup.record(DeprecationWarning)
typer = np.dtype('l').type
actual = random.random_integers(typer(np.iinfo('l').max),
typer(np.iinfo('l').max))
assert_(len(w) == 1)
assert_equal(actual, desired)
def test_random_integers_deprecated(self):
with warnings.catch_warnings():
warnings.simplefilter("error", DeprecationWarning)
# DeprecationWarning raised with high == None
assert_raises(DeprecationWarning,
random.random_integers,
np.iinfo('l').max)
# DeprecationWarning raised with high != None
assert_raises(DeprecationWarning,
random.random_integers,
np.iinfo('l').max, np.iinfo('l').max)
def test_random_sample(self):
random.seed(self.seed)
actual = random.random_sample((3, 2))
desired = np.array([[0.61879477158567997, 0.59162362775974664],
[0.88868358904449662, 0.89165480011560816],
[0.4575674820298663, 0.7781880808593471]])
assert_array_almost_equal(actual, desired, decimal=15)
random.seed(self.seed)
actual = random.random_sample()
assert_array_almost_equal(actual, desired[0, 0], decimal=15)
def test_choice_uniform_replace(self):
random.seed(self.seed)
actual = random.choice(4, 4)
desired = np.array([2, 3, 2, 3])
assert_array_equal(actual, desired)
def test_choice_nonuniform_replace(self):
random.seed(self.seed)
actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
desired = np.array([1, 1, 2, 2])
assert_array_equal(actual, desired)
def test_choice_uniform_noreplace(self):
random.seed(self.seed)
actual = random.choice(4, 3, replace=False)
desired = np.array([0, 1, 3])
assert_array_equal(actual, desired)
def test_choice_nonuniform_noreplace(self):
random.seed(self.seed)
actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
desired = np.array([2, 3, 1])
assert_array_equal(actual, desired)
def test_choice_noninteger(self):
random.seed(self.seed)
actual = random.choice(['a', 'b', 'c', 'd'], 4)
desired = np.array(['c', 'd', 'c', 'd'])
assert_array_equal(actual, desired)
def test_choice_exceptions(self):
sample = random.choice
assert_raises(ValueError, sample, -1, 3)
assert_raises(ValueError, sample, 3., 3)
assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
assert_raises(ValueError, sample, [], 3)
assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
p=[[0.25, 0.25], [0.25, 0.25]])
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
# gh-13087
assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
assert_raises(ValueError, sample, [1, 2, 3], 2,
replace=False, p=[1, 0, 0])
def test_choice_return_shape(self):
p = [0.1, 0.9]
# Check scalar
assert_(np.isscalar(random.choice(2, replace=True)))
assert_(np.isscalar(random.choice(2, replace=False)))
assert_(np.isscalar(random.choice(2, replace=True, p=p)))
assert_(np.isscalar(random.choice(2, replace=False, p=p)))
assert_(np.isscalar(random.choice([1, 2], replace=True)))
assert_(random.choice([None], replace=True) is None)
a = np.array([1, 2])
arr = np.empty(1, dtype=object)
arr[0] = a
assert_(random.choice(arr, replace=True) is a)
# Check 0-d array
s = tuple()
assert_(not np.isscalar(random.choice(2, s, replace=True)))
assert_(not np.isscalar(random.choice(2, s, replace=False)))
assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
assert_(random.choice([None], s, replace=True).ndim == 0)
a = np.array([1, 2])
arr = np.empty(1, dtype=object)
arr[0] = a
assert_(random.choice(arr, s, replace=True).item() is a)
# Check multi dimensional array
s = (2, 3)
p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
assert_equal(random.choice(6, s, replace=True).shape, s)
assert_equal(random.choice(6, s, replace=False).shape, s)
assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
# Check zero-size
assert_equal(random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
assert_equal(random.randint(0, -10, size=0).shape, (0,))
assert_equal(random.randint(10, 10, size=0).shape, (0,))
assert_equal(random.choice(0, size=0).shape, (0,))
assert_equal(random.choice([], size=(0,)).shape, (0,))
assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
(3, 0, 4))
assert_raises(ValueError, random.choice, [], 10)
def test_choice_nan_probabilities(self):
a = np.array([42, 1, 2])
p = [None, None, None]
assert_raises(ValueError, random.choice, a, p=p)
def test_choice_p_non_contiguous(self):
p = np.ones(10) / 5
p[1::2] = 3.0
random.seed(self.seed)
non_contig = random.choice(5, 3, p=p[::2])
random.seed(self.seed)
contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
assert_array_equal(non_contig, contig)
def test_bytes(self):
random.seed(self.seed)
actual = random.bytes(10)
desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
assert_equal(actual, desired)
def test_shuffle(self):
# Test lists, arrays (of various dtypes), and multidimensional versions
# of both, c-contiguous or not:
for conv in [lambda x: np.array([]),
lambda x: x,
lambda x: np.asarray(x).astype(np.int8),
lambda x: np.asarray(x).astype(np.float32),
lambda x: np.asarray(x).astype(np.complex64),
lambda x: np.asarray(x).astype(object),
lambda x: [(i, i) for i in x],
lambda x: np.asarray([[i, i] for i in x]),
lambda x: np.vstack([x, x]).T,
# gh-11442
lambda x: (np.asarray([(i, i) for i in x],
[("a", int), ("b", int)])
.view(np.recarray)),
# gh-4270
lambda x: np.asarray([(i, i) for i in x],
[("a", object, (1,)),
("b", np.int32, (1,))])]:
random.seed(self.seed)
alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
random.shuffle(alist)
actual = alist
desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
assert_array_equal(actual, desired)
def test_shuffle_masked(self):
# gh-3263
a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
a_orig = a.copy()
b_orig = b.copy()
for i in range(50):
random.shuffle(a)
assert_equal(
sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
random.shuffle(b)
assert_equal(
sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
def test_shuffle_invalid_objects(self):
x = np.array(3)
assert_raises(TypeError, random.shuffle, x)
def test_permutation(self):
random.seed(self.seed)
alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
actual = random.permutation(alist)
desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3]
assert_array_equal(actual, desired)
random.seed(self.seed)
arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
actual = random.permutation(arr_2d)
assert_array_equal(actual, np.atleast_2d(desired).T)
random.seed(self.seed)
bad_x_str = "abcd"
assert_raises(IndexError, random.permutation, bad_x_str)
random.seed(self.seed)
bad_x_float = 1.2
assert_raises(IndexError, random.permutation, bad_x_float)
integer_val = 10
desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2]
random.seed(self.seed)
actual = random.permutation(integer_val)
assert_array_equal(actual, desired)
def test_beta(self):
random.seed(self.seed)
actual = random.beta(.1, .9, size=(3, 2))
desired = np.array(
[[1.45341850513746058e-02, 5.31297615662868145e-04],
[1.85366619058432324e-06, 4.19214516800110563e-03],
[1.58405155108498093e-04, 1.26252891949397652e-04]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_binomial(self):
random.seed(self.seed)
actual = random.binomial(100.123, .456, size=(3, 2))
desired = np.array([[37, 43],
[42, 48],
[46, 45]])
assert_array_equal(actual, desired)
random.seed(self.seed)
actual = random.binomial(100.123, .456)
desired = 37
assert_array_equal(actual, desired)
def test_chisquare(self):
random.seed(self.seed)
actual = random.chisquare(50, size=(3, 2))
desired = np.array([[63.87858175501090585, 68.68407748911370447],
[65.77116116901505904, 47.09686762438974483],
[72.3828403199695174, 74.18408615260374006]])
assert_array_almost_equal(actual, desired, decimal=13)
def test_dirichlet(self):
random.seed(self.seed)
alpha = np.array([51.72840233779265162, 39.74494232180943953])
actual = random.dirichlet(alpha, size=(3, 2))
desired = np.array([[[0.54539444573611562, 0.45460555426388438],
[0.62345816822039413, 0.37654183177960598]],
[[0.55206000085785778, 0.44793999914214233],
[0.58964023305154301, 0.41035976694845688]],
[[0.59266909280647828, 0.40733090719352177],
[0.56974431743975207, 0.43025568256024799]]])
assert_array_almost_equal(actual, desired, decimal=15)
bad_alpha = np.array([5.4e-01, -1.0e-16])
assert_raises(ValueError, random.dirichlet, bad_alpha)
random.seed(self.seed)
alpha = np.array([51.72840233779265162, 39.74494232180943953])
actual = random.dirichlet(alpha)
assert_array_almost_equal(actual, desired[0, 0], decimal=15)
def test_dirichlet_size(self):
# gh-3173
p = np.array([51.72840233779265162, 39.74494232180943953])
assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
assert_raises(TypeError, random.dirichlet, p, float(1))
def test_dirichlet_bad_alpha(self):
# gh-2089
alpha = np.array([5.4e-01, -1.0e-16])
assert_raises(ValueError, random.dirichlet, alpha)
def test_dirichlet_zero_alpha(self):
y = random.default_rng().dirichlet([5, 9, 0, 8])
assert_equal(y[2], 0)
def test_dirichlet_alpha_non_contiguous(self):
a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
alpha = a[::2]
random.seed(self.seed)
non_contig = random.dirichlet(alpha, size=(3, 2))
random.seed(self.seed)
contig = random.dirichlet(np.ascontiguousarray(alpha),
size=(3, 2))
assert_array_almost_equal(non_contig, contig)
def test_exponential(self):
random.seed(self.seed)
actual = random.exponential(1.1234, size=(3, 2))
desired = np.array([[1.08342649775011624, 1.00607889924557314],
[2.46628830085216721, 2.49668106809923884],
[0.68717433461363442, 1.69175666993575979]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_exponential_0(self):
assert_equal(random.exponential(scale=0), 0)
assert_raises(ValueError, random.exponential, scale=-0.)
def test_f(self):
random.seed(self.seed)
actual = random.f(12, 77, size=(3, 2))
desired = np.array([[1.21975394418575878, 1.75135759791559775],
[1.44803115017146489, 1.22108959480396262],
[1.02176975757740629, 1.34431827623300415]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_gamma(self):
random.seed(self.seed)
actual = random.gamma(5, 3, size=(3, 2))
desired = np.array([[24.60509188649287182, 28.54993563207210627],
[26.13476110204064184, 12.56988482927716078],
[31.71863275789960568, 33.30143302795922011]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_gamma_0(self):
assert_equal(random.gamma(shape=0, scale=0), 0)
assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
def test_geometric(self):
random.seed(self.seed)
actual = random.geometric(.123456789, size=(3, 2))
desired = np.array([[8, 7],
[17, 17],
[5, 12]])
assert_array_equal(actual, desired)
def test_geometric_exceptions(self):
assert_raises(ValueError, random.geometric, 1.1)
assert_raises(ValueError, random.geometric, [1.1] * 10)
assert_raises(ValueError, random.geometric, -0.1)
assert_raises(ValueError, random.geometric, [-0.1] * 10)
with suppress_warnings() as sup:
sup.record(RuntimeWarning)
assert_raises(ValueError, random.geometric, np.nan)
assert_raises(ValueError, random.geometric, [np.nan] * 10)
def test_gumbel(self):
random.seed(self.seed)
actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[0.19591898743416816, 0.34405539668096674],
[-1.4492522252274278, -1.47374816298446865],
[1.10651090478803416, -0.69535848626236174]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_gumbel_0(self):
assert_equal(random.gumbel(scale=0), 0)
assert_raises(ValueError, random.gumbel, scale=-0.)
def test_hypergeometric(self):
random.seed(self.seed)
actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
desired = np.array([[10, 10],
[10, 10],
[9, 9]])
assert_array_equal(actual, desired)
# Test nbad = 0
actual = random.hypergeometric(5, 0, 3, size=4)
desired = np.array([3, 3, 3, 3])
assert_array_equal(actual, desired)
actual = random.hypergeometric(15, 0, 12, size=4)
desired = np.array([12, 12, 12, 12])
assert_array_equal(actual, desired)
# Test ngood = 0
actual = random.hypergeometric(0, 5, 3, size=4)
desired = np.array([0, 0, 0, 0])
assert_array_equal(actual, desired)
actual = random.hypergeometric(0, 15, 12, size=4)
desired = np.array([0, 0, 0, 0])
assert_array_equal(actual, desired)
def test_laplace(self):
random.seed(self.seed)
actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[0.66599721112760157, 0.52829452552221945],
[3.12791959514407125, 3.18202813572992005],
[-0.05391065675859356, 1.74901336242837324]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_laplace_0(self):
assert_equal(random.laplace(scale=0), 0)
assert_raises(ValueError, random.laplace, scale=-0.)
def test_logistic(self):
random.seed(self.seed)
actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[1.09232835305011444, 0.8648196662399954],
[4.27818590694950185, 4.33897006346929714],
[-0.21682183359214885, 2.63373365386060332]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_lognormal(self):
random.seed(self.seed)
actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
desired = np.array([[16.50698631688883822, 36.54846706092654784],
[22.67886599981281748, 0.71617561058995771],
[65.72798501792723869, 86.84341601437161273]])
assert_array_almost_equal(actual, desired, decimal=13)
def test_lognormal_0(self):
assert_equal(random.lognormal(sigma=0), 1)
assert_raises(ValueError, random.lognormal, sigma=-0.)
def test_logseries(self):
random.seed(self.seed)
actual = random.logseries(p=.923456789, size=(3, 2))
desired = np.array([[2, 2],
[6, 17],
[3, 6]])
assert_array_equal(actual, desired)
def test_logseries_zero(self):
assert random.logseries(0) == 1
@pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.])
def test_logseries_exceptions(self, value):
with np.errstate(invalid="ignore"):
with pytest.raises(ValueError):
random.logseries(value)
with pytest.raises(ValueError):
# contiguous path:
random.logseries(np.array([value] * 10))
with pytest.raises(ValueError):
# non-contiguous path:
random.logseries(np.array([value] * 10)[::2])
def test_multinomial(self):
random.seed(self.seed)
actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
desired = np.array([[[4, 3, 5, 4, 2, 2],
[5, 2, 8, 2, 2, 1]],
[[3, 4, 3, 6, 0, 4],
[2, 1, 4, 3, 6, 4]],
[[4, 4, 2, 5, 2, 3],
[4, 3, 4, 2, 3, 4]]])
assert_array_equal(actual, desired)
def test_multivariate_normal(self):
random.seed(self.seed)
mean = (.123456789, 10)
cov = [[1, 0], [0, 1]]
size = (3, 2)
actual = random.multivariate_normal(mean, cov, size)
desired = np.array([[[1.463620246718631, 11.73759122771936],
[1.622445133300628, 9.771356667546383]],
[[2.154490787682787, 12.170324946056553],
[1.719909438201865, 9.230548443648306]],
[[0.689515026297799, 9.880729819607714],
[-0.023054015651998, 9.201096623542879]]])
assert_array_almost_equal(actual, desired, decimal=15)
# Check for default size, was raising deprecation warning
actual = random.multivariate_normal(mean, cov)
desired = np.array([0.895289569463708, 9.17180864067987])
assert_array_almost_equal(actual, desired, decimal=15)
# Check that non positive-semidefinite covariance warns with
# RuntimeWarning
mean = [0, 0]
cov = [[1, 2], [2, 1]]
assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
# and that it doesn't warn with RuntimeWarning check_valid='ignore'
assert_no_warnings(random.multivariate_normal, mean, cov,
check_valid='ignore')
# and that it raises with RuntimeWarning check_valid='raises'
assert_raises(ValueError, random.multivariate_normal, mean, cov,
check_valid='raise')
cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
with suppress_warnings() as sup:
random.multivariate_normal(mean, cov)
w = sup.record(RuntimeWarning)
assert len(w) == 0
mu = np.zeros(2)
cov = np.eye(2)
assert_raises(ValueError, random.multivariate_normal, mean, cov,
check_valid='other')
assert_raises(ValueError, random.multivariate_normal,
np.zeros((2, 1, 1)), cov)
assert_raises(ValueError, random.multivariate_normal,
mu, np.empty((3, 2)))
assert_raises(ValueError, random.multivariate_normal,
mu, np.eye(3))
def test_negative_binomial(self):
random.seed(self.seed)
actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
desired = np.array([[848, 841],
[892, 611],
[779, 647]])
assert_array_equal(actual, desired)
def test_negative_binomial_exceptions(self):
with suppress_warnings() as sup:
sup.record(RuntimeWarning)
assert_raises(ValueError, random.negative_binomial, 100, np.nan)
assert_raises(ValueError, random.negative_binomial, 100,
[np.nan] * 10)
def test_noncentral_chisquare(self):
random.seed(self.seed)
actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
desired = np.array([[23.91905354498517511, 13.35324692733826346],
[31.22452661329736401, 16.60047399466177254],
[5.03461598262724586, 17.94973089023519464]])
assert_array_almost_equal(actual, desired, decimal=14)
actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
desired = np.array([[1.47145377828516666, 0.15052899268012659],
[0.00943803056963588, 1.02647251615666169],
[0.332334982684171, 0.15451287602753125]])
assert_array_almost_equal(actual, desired, decimal=14)
random.seed(self.seed)
actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
desired = np.array([[9.597154162763948, 11.725484450296079],
[10.413711048138335, 3.694475922923986],
[13.484222138963087, 14.377255424602957]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_noncentral_f(self):
random.seed(self.seed)
actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
size=(3, 2))
desired = np.array([[1.40598099674926669, 0.34207973179285761],
[3.57715069265772545, 7.92632662577829805],
[0.43741599463544162, 1.1774208752428319]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_noncentral_f_nan(self):
random.seed(self.seed)
actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
assert np.isnan(actual)
def test_normal(self):
random.seed(self.seed)
actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[2.80378370443726244, 3.59863924443872163],
[3.121433477601256, -0.33382987590723379],
[4.18552478636557357, 4.46410668111310471]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_normal_0(self):
assert_equal(random.normal(scale=0), 0)
assert_raises(ValueError, random.normal, scale=-0.)
def test_pareto(self):
random.seed(self.seed)
actual = random.pareto(a=.123456789, size=(3, 2))
desired = np.array(
[[2.46852460439034849e+03, 1.41286880810518346e+03],
[5.28287797029485181e+07, 6.57720981047328785e+07],
[1.40840323350391515e+02, 1.98390255135251704e+05]])
# For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
# matrix differs by 24 nulps. Discussion:
# https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
# Consensus is that this is probably some gcc quirk that affects
# rounding but not in any important way, so we just use a looser
# tolerance on this test:
np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
def test_poisson(self):
random.seed(self.seed)
actual = random.poisson(lam=.123456789, size=(3, 2))
desired = np.array([[0, 0],
[1, 0],
[0, 0]])
assert_array_equal(actual, desired)
def test_poisson_exceptions(self):
lambig = np.iinfo('l').max
lamneg = -1
assert_raises(ValueError, random.poisson, lamneg)
assert_raises(ValueError, random.poisson, [lamneg] * 10)
assert_raises(ValueError, random.poisson, lambig)
assert_raises(ValueError, random.poisson, [lambig] * 10)
with suppress_warnings() as sup:
sup.record(RuntimeWarning)
assert_raises(ValueError, random.poisson, np.nan)
assert_raises(ValueError, random.poisson, [np.nan] * 10)
def test_power(self):
random.seed(self.seed)
actual = random.power(a=.123456789, size=(3, 2))
desired = np.array([[0.02048932883240791, 0.01424192241128213],
[0.38446073748535298, 0.39499689943484395],
[0.00177699707563439, 0.13115505880863756]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_rayleigh(self):
random.seed(self.seed)
actual = random.rayleigh(scale=10, size=(3, 2))
desired = np.array([[13.8882496494248393, 13.383318339044731],
[20.95413364294492098, 21.08285015800712614],
[11.06066537006854311, 17.35468505778271009]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_rayleigh_0(self):
assert_equal(random.rayleigh(scale=0), 0)
assert_raises(ValueError, random.rayleigh, scale=-0.)
def test_standard_cauchy(self):
random.seed(self.seed)
actual = random.standard_cauchy(size=(3, 2))
desired = np.array([[0.77127660196445336, -6.55601161955910605],
[0.93582023391158309, -2.07479293013759447],
[-4.74601644297011926, 0.18338989290760804]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_exponential(self):
random.seed(self.seed)
actual = random.standard_exponential(size=(3, 2))
desired = np.array([[0.96441739162374596, 0.89556604882105506],
[2.1953785836319808, 2.22243285392490542],
[0.6116915921431676, 1.50592546727413201]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_gamma(self):
random.seed(self.seed)
actual = random.standard_gamma(shape=3, size=(3, 2))
desired = np.array([[5.50841531318455058, 6.62953470301903103],
[5.93988484943779227, 2.31044849402133989],
[7.54838614231317084, 8.012756093271868]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_gamma_0(self):
assert_equal(random.standard_gamma(shape=0), 0)
assert_raises(ValueError, random.standard_gamma, shape=-0.)
def test_standard_normal(self):
random.seed(self.seed)
actual = random.standard_normal(size=(3, 2))
desired = np.array([[1.34016345771863121, 1.73759122771936081],
[1.498988344300628, -0.2286433324536169],
[2.031033998682787, 2.17032494605655257]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_randn_singleton(self):
random.seed(self.seed)
actual = random.randn()
desired = np.array(1.34016345771863121)
assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_t(self):
random.seed(self.seed)
actual = random.standard_t(df=10, size=(3, 2))
desired = np.array([[0.97140611862659965, -0.08830486548450577],
[1.36311143689505321, -0.55317463909867071],
[-0.18473749069684214, 0.61181537341755321]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_triangular(self):
random.seed(self.seed)
actual = random.triangular(left=5.12, mode=10.23, right=20.34,
size=(3, 2))
desired = np.array([[12.68117178949215784, 12.4129206149193152],
[16.20131377335158263, 16.25692138747600524],
[11.20400690911820263, 14.4978144835829923]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_uniform(self):
random.seed(self.seed)
actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
desired = np.array([[6.99097932346268003, 6.73801597444323974],
[9.50364421400426274, 9.53130618907631089],
[5.48995325769805476, 8.47493103280052118]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_uniform_range_bounds(self):
fmin = np.finfo('float').min
fmax = np.finfo('float').max
func = random.uniform
assert_raises(OverflowError, func, -np.inf, 0)
assert_raises(OverflowError, func, 0, np.inf)
assert_raises(OverflowError, func, fmin, fmax)
assert_raises(OverflowError, func, [-np.inf], [0])
assert_raises(OverflowError, func, [0], [np.inf])
# (fmax / 1e17) - fmin is within range, so this should not throw
# account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
# DBL_MAX by increasing fmin a bit
random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
def test_scalar_exception_propagation(self):
# Tests that exceptions are correctly propagated in distributions
# when called with objects that throw exceptions when converted to
# scalars.
#
# Regression test for gh: 8865
class ThrowingFloat(np.ndarray):
def __float__(self):
raise TypeError
throwing_float = np.array(1.0).view(ThrowingFloat)
assert_raises(TypeError, random.uniform, throwing_float,
throwing_float)
class ThrowingInteger(np.ndarray):
def __int__(self):
raise TypeError
throwing_int = np.array(1).view(ThrowingInteger)
assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
def test_vonmises(self):
random.seed(self.seed)
actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
desired = np.array([[2.28567572673902042, 2.89163838442285037],
[0.38198375564286025, 2.57638023113890746],
[1.19153771588353052, 1.83509849681825354]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_vonmises_small(self):
# check infinite loop, gh-4720
random.seed(self.seed)
r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
assert_(np.isfinite(r).all())
def test_vonmises_large(self):
# guard against changes in RandomState when Generator is fixed
random.seed(self.seed)
actual = random.vonmises(mu=0., kappa=1e7, size=3)
desired = np.array([4.634253748521111e-04,
3.558873596114509e-04,
-2.337119622577433e-04])
assert_array_almost_equal(actual, desired, decimal=8)
def test_vonmises_nan(self):
random.seed(self.seed)
r = random.vonmises(mu=0., kappa=np.nan)
assert_(np.isnan(r))
def test_wald(self):
random.seed(self.seed)
actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
desired = np.array([[3.82935265715889983, 5.13125249184285526],
[0.35045403618358717, 1.50832396872003538],
[0.24124319895843183, 0.22031101461955038]])
assert_array_almost_equal(actual, desired, decimal=14)
def test_weibull(self):
random.seed(self.seed)
actual = random.weibull(a=1.23, size=(3, 2))
desired = np.array([[0.97097342648766727, 0.91422896443565516],
[1.89517770034962929, 1.91414357960479564],
[0.67057783752390987, 1.39494046635066793]])
assert_array_almost_equal(actual, desired, decimal=15)
def test_weibull_0(self):
random.seed(self.seed)
assert_equal(random.weibull(a=0, size=12), np.zeros(12))
assert_raises(ValueError, random.weibull, a=-0.)
def test_zipf(self):
random.seed(self.seed)
actual = random.zipf(a=1.23, size=(3, 2))
desired = np.array([[66, 29],
[1, 1],
[3, 13]])
assert_array_equal(actual, desired)
class TestBroadcast:
# tests that functions that broadcast behave
# correctly when presented with non-scalar arguments
def setup_method(self):
self.seed = 123456789
def set_seed(self):
random.seed(self.seed)
def test_uniform(self):
low = [0]
high = [1]
uniform = random.uniform
desired = np.array([0.53283302478975902,
0.53413660089041659,
0.50955303552646702])
self.set_seed()
actual = uniform(low * 3, high)
assert_array_almost_equal(actual, desired, decimal=14)
self.set_seed()
actual = uniform(low, high * 3)
assert_array_almost_equal(actual, desired, decimal=14)
def test_normal(self):
loc = [0]
scale = [1]
bad_scale = [-1]
normal = random.normal
desired = np.array([2.2129019979039612,
2.1283977976520019,
1.8417114045748335])
self.set_seed()
actual = normal(loc * 3, scale)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, normal, loc * 3, bad_scale)
self.set_seed()
actual = normal(loc, scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, normal, loc, bad_scale * 3)
def test_beta(self):
a = [1]
b = [2]
bad_a = [-1]
bad_b = [-2]
beta = random.beta
desired = np.array([0.19843558305989056,
0.075230336409423643,
0.24976865978980844])
self.set_seed()
actual = beta(a * 3, b)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, beta, bad_a * 3, b)
assert_raises(ValueError, beta, a * 3, bad_b)
self.set_seed()
actual = beta(a, b * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, beta, bad_a, b * 3)
assert_raises(ValueError, beta, a, bad_b * 3)
def test_exponential(self):
scale = [1]
bad_scale = [-1]
exponential = random.exponential
desired = np.array([0.76106853658845242,
0.76386282278691653,
0.71243813125891797])
self.set_seed()
actual = exponential(scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, exponential, bad_scale * 3)
def test_standard_gamma(self):
shape = [1]
bad_shape = [-1]
std_gamma = random.standard_gamma
desired = np.array([0.76106853658845242,
0.76386282278691653,
0.71243813125891797])
self.set_seed()
actual = std_gamma(shape * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, std_gamma, bad_shape * 3)
def test_gamma(self):
shape = [1]
scale = [2]
bad_shape = [-1]
bad_scale = [-2]
gamma = random.gamma
desired = np.array([1.5221370731769048,
1.5277256455738331,
1.4248762625178359])
self.set_seed()
actual = gamma(shape * 3, scale)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, gamma, bad_shape * 3, scale)
assert_raises(ValueError, gamma, shape * 3, bad_scale)
self.set_seed()
actual = gamma(shape, scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, gamma, bad_shape, scale * 3)
assert_raises(ValueError, gamma, shape, bad_scale * 3)
def test_f(self):
dfnum = [1]
dfden = [2]
bad_dfnum = [-1]
bad_dfden = [-2]
f = random.f
desired = np.array([0.80038951638264799,
0.86768719635363512,
2.7251095168386801])
self.set_seed()
actual = f(dfnum * 3, dfden)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, f, bad_dfnum * 3, dfden)
assert_raises(ValueError, f, dfnum * 3, bad_dfden)
self.set_seed()
actual = f(dfnum, dfden * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, f, bad_dfnum, dfden * 3)
assert_raises(ValueError, f, dfnum, bad_dfden * 3)
def test_noncentral_f(self):
dfnum = [2]
dfden = [3]
nonc = [4]
bad_dfnum = [0]
bad_dfden = [-1]
bad_nonc = [-2]
nonc_f = random.noncentral_f
desired = np.array([9.1393943263705211,
13.025456344595602,
8.8018098359100545])
self.set_seed()
actual = nonc_f(dfnum * 3, dfden, nonc)
assert_array_almost_equal(actual, desired, decimal=14)
assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
self.set_seed()
actual = nonc_f(dfnum, dfden * 3, nonc)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
self.set_seed()
actual = nonc_f(dfnum, dfden, nonc * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
def test_noncentral_f_small_df(self):
self.set_seed()
desired = np.array([6.869638627492048, 0.785880199263955])
actual = random.noncentral_f(0.9, 0.9, 2, size=2)
assert_array_almost_equal(actual, desired, decimal=14)
def test_chisquare(self):
df = [1]
bad_df = [-1]
chisquare = random.chisquare
desired = np.array([0.57022801133088286,
0.51947702108840776,
0.1320969254923558])
self.set_seed()
actual = chisquare(df * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, chisquare, bad_df * 3)
def test_noncentral_chisquare(self):
df = [1]
nonc = [2]
bad_df = [-1]
bad_nonc = [-2]
nonc_chi = random.noncentral_chisquare
desired = np.array([9.0015599467913763,
4.5804135049718742,
6.0872302432834564])
self.set_seed()
actual = nonc_chi(df * 3, nonc)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
self.set_seed()
actual = nonc_chi(df, nonc * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
def test_standard_t(self):
df = [1]
bad_df = [-1]
t = random.standard_t
desired = np.array([3.0702872575217643,
5.8560725167361607,
1.0274791436474273])
self.set_seed()
actual = t(df * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, t, bad_df * 3)
assert_raises(ValueError, random.standard_t, bad_df * 3)
def test_vonmises(self):
mu = [2]
kappa = [1]
bad_kappa = [-1]
vonmises = random.vonmises
desired = np.array([2.9883443664201312,
-2.7064099483995943,
-1.8672476700665914])
self.set_seed()
actual = vonmises(mu * 3, kappa)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
self.set_seed()
actual = vonmises(mu, kappa * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
def test_pareto(self):
a = [1]
bad_a = [-1]
pareto = random.pareto
desired = np.array([1.1405622680198362,
1.1465519762044529,
1.0389564467453547])
self.set_seed()
actual = pareto(a * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, pareto, bad_a * 3)
assert_raises(ValueError, random.pareto, bad_a * 3)
def test_weibull(self):
a = [1]
bad_a = [-1]
weibull = random.weibull
desired = np.array([0.76106853658845242,
0.76386282278691653,
0.71243813125891797])
self.set_seed()
actual = weibull(a * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, weibull, bad_a * 3)
assert_raises(ValueError, random.weibull, bad_a * 3)
def test_power(self):
a = [1]
bad_a = [-1]
power = random.power
desired = np.array([0.53283302478975902,
0.53413660089041659,
0.50955303552646702])
self.set_seed()
actual = power(a * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, power, bad_a * 3)
assert_raises(ValueError, random.power, bad_a * 3)
def test_laplace(self):
loc = [0]
scale = [1]
bad_scale = [-1]
laplace = random.laplace
desired = np.array([0.067921356028507157,
0.070715642226971326,
0.019290950698972624])
self.set_seed()
actual = laplace(loc * 3, scale)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, laplace, loc * 3, bad_scale)
self.set_seed()
actual = laplace(loc, scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, laplace, loc, bad_scale * 3)
def test_gumbel(self):
loc = [0]
scale = [1]
bad_scale = [-1]
gumbel = random.gumbel
desired = np.array([0.2730318639556768,
0.26936705726291116,
0.33906220393037939])
self.set_seed()
actual = gumbel(loc * 3, scale)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, gumbel, loc * 3, bad_scale)
self.set_seed()
actual = gumbel(loc, scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, gumbel, loc, bad_scale * 3)
def test_logistic(self):
loc = [0]
scale = [1]
bad_scale = [-1]
logistic = random.logistic
desired = np.array([0.13152135837586171,
0.13675915696285773,
0.038216792802833396])
self.set_seed()
actual = logistic(loc * 3, scale)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, logistic, loc * 3, bad_scale)
self.set_seed()
actual = logistic(loc, scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, logistic, loc, bad_scale * 3)
assert_equal(random.logistic(1.0, 0.0), 1.0)
def test_lognormal(self):
mean = [0]
sigma = [1]
bad_sigma = [-1]
lognormal = random.lognormal
desired = np.array([9.1422086044848427,
8.4013952870126261,
6.3073234116578671])
self.set_seed()
actual = lognormal(mean * 3, sigma)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
assert_raises(ValueError, random.lognormal, mean * 3, bad_sigma)
self.set_seed()
actual = lognormal(mean, sigma * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
def test_rayleigh(self):
scale = [1]
bad_scale = [-1]
rayleigh = random.rayleigh
desired = np.array([1.2337491937897689,
1.2360119924878694,
1.1936818095781789])
self.set_seed()
actual = rayleigh(scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, rayleigh, bad_scale * 3)
def test_wald(self):
mean = [0.5]
scale = [1]
bad_mean = [0]
bad_scale = [-2]
wald = random.wald
desired = np.array([0.11873681120271318,
0.12450084820795027,
0.9096122728408238])
self.set_seed()
actual = wald(mean * 3, scale)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, wald, bad_mean * 3, scale)
assert_raises(ValueError, wald, mean * 3, bad_scale)
assert_raises(ValueError, random.wald, bad_mean * 3, scale)
assert_raises(ValueError, random.wald, mean * 3, bad_scale)
self.set_seed()
actual = wald(mean, scale * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, wald, bad_mean, scale * 3)
assert_raises(ValueError, wald, mean, bad_scale * 3)
assert_raises(ValueError, wald, 0.0, 1)
assert_raises(ValueError, wald, 0.5, 0.0)
def test_triangular(self):
left = [1]
right = [3]
mode = [2]
bad_left_one = [3]
bad_mode_one = [4]
bad_left_two, bad_mode_two = right * 2
triangular = random.triangular
desired = np.array([2.03339048710429,
2.0347400359389356,
2.0095991069536208])
self.set_seed()
actual = triangular(left * 3, mode, right)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
right)
self.set_seed()
actual = triangular(left, mode * 3, right)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
right)
self.set_seed()
actual = triangular(left, mode, right * 3)
assert_array_almost_equal(actual, desired, decimal=14)
assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
right * 3)
assert_raises(ValueError, triangular, 10., 0., 20.)
assert_raises(ValueError, triangular, 10., 25., 20.)
assert_raises(ValueError, triangular, 10., 10., 10.)
def test_binomial(self):
n = [1]
p = [0.5]
bad_n = [-1]
bad_p_one = [-1]
bad_p_two = [1.5]
binom = random.binomial
desired = np.array([1, 1, 1])
self.set_seed()
actual = binom(n * 3, p)
assert_array_equal(actual, desired)
assert_raises(ValueError, binom, bad_n * 3, p)
assert_raises(ValueError, binom, n * 3, bad_p_one)
assert_raises(ValueError, binom, n * 3, bad_p_two)
self.set_seed()
actual = binom(n, p * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, binom, bad_n, p * 3)
assert_raises(ValueError, binom, n, bad_p_one * 3)
assert_raises(ValueError, binom, n, bad_p_two * 3)
def test_negative_binomial(self):
n = [1]
p = [0.5]
bad_n = [-1]
bad_p_one = [-1]
bad_p_two = [1.5]
neg_binom = random.negative_binomial
desired = np.array([1, 0, 1])
self.set_seed()
actual = neg_binom(n * 3, p)
assert_array_equal(actual, desired)
assert_raises(ValueError, neg_binom, bad_n * 3, p)
assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
self.set_seed()
actual = neg_binom(n, p * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, neg_binom, bad_n, p * 3)
assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
def test_poisson(self):
max_lam = random.RandomState()._poisson_lam_max
lam = [1]
bad_lam_one = [-1]
bad_lam_two = [max_lam * 2]
poisson = random.poisson
desired = np.array([1, 1, 0])
self.set_seed()
actual = poisson(lam * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, poisson, bad_lam_one * 3)
assert_raises(ValueError, poisson, bad_lam_two * 3)
def test_zipf(self):
a = [2]
bad_a = [0]
zipf = random.zipf
desired = np.array([2, 2, 1])
self.set_seed()
actual = zipf(a * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, zipf, bad_a * 3)
with np.errstate(invalid='ignore'):
assert_raises(ValueError, zipf, np.nan)
assert_raises(ValueError, zipf, [0, 0, np.nan])
def test_geometric(self):
p = [0.5]
bad_p_one = [-1]
bad_p_two = [1.5]
geom = random.geometric
desired = np.array([2, 2, 2])
self.set_seed()
actual = geom(p * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, geom, bad_p_one * 3)
assert_raises(ValueError, geom, bad_p_two * 3)
def test_hypergeometric(self):
ngood = [1]
nbad = [2]
nsample = [2]
bad_ngood = [-1]
bad_nbad = [-2]
bad_nsample_one = [0]
bad_nsample_two = [4]
hypergeom = random.hypergeometric
desired = np.array([1, 1, 1])
self.set_seed()
actual = hypergeom(ngood * 3, nbad, nsample)
assert_array_equal(actual, desired)
assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
self.set_seed()
actual = hypergeom(ngood, nbad * 3, nsample)
assert_array_equal(actual, desired)
assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
self.set_seed()
actual = hypergeom(ngood, nbad, nsample * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
assert_raises(ValueError, hypergeom, -1, 10, 20)
assert_raises(ValueError, hypergeom, 10, -1, 20)
assert_raises(ValueError, hypergeom, 10, 10, 0)
assert_raises(ValueError, hypergeom, 10, 10, 25)
def test_logseries(self):
p = [0.5]
bad_p_one = [2]
bad_p_two = [-1]
logseries = random.logseries
desired = np.array([1, 1, 1])
self.set_seed()
actual = logseries(p * 3)
assert_array_equal(actual, desired)
assert_raises(ValueError, logseries, bad_p_one * 3)
assert_raises(ValueError, logseries, bad_p_two * 3)
@pytest.mark.skipif(IS_WASM, reason="can't start thread")
class TestThread:
# make sure each state produces the same sequence even in threads
def setup_method(self):
self.seeds = range(4)
def check_function(self, function, sz):
from threading import Thread
out1 = np.empty((len(self.seeds),) + sz)
out2 = np.empty((len(self.seeds),) + sz)
# threaded generation
t = [Thread(target=function, args=(random.RandomState(s), o))
for s, o in zip(self.seeds, out1)]
[x.start() for x in t]
[x.join() for x in t]
# the same serial
for s, o in zip(self.seeds, out2):
function(random.RandomState(s), o)
# these platforms change x87 fpu precision mode in threads
if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
assert_array_almost_equal(out1, out2)
else:
assert_array_equal(out1, out2)
def test_normal(self):
def gen_random(state, out):
out[...] = state.normal(size=10000)
self.check_function(gen_random, sz=(10000,))
def test_exp(self):
def gen_random(state, out):
out[...] = state.exponential(scale=np.ones((100, 1000)))
self.check_function(gen_random, sz=(100, 1000))
def test_multinomial(self):
def gen_random(state, out):
out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
self.check_function(gen_random, sz=(10000, 6))
# See Issue #4263
class TestSingleEltArrayInput:
def setup_method(self):
self.argOne = np.array([2])
self.argTwo = np.array([3])
self.argThree = np.array([4])
self.tgtShape = (1,)
def test_one_arg_funcs(self):
funcs = (random.exponential, random.standard_gamma,
random.chisquare, random.standard_t,
random.pareto, random.weibull,
random.power, random.rayleigh,
random.poisson, random.zipf,
random.geometric, random.logseries)
probfuncs = (random.geometric, random.logseries)
for func in funcs:
if func in probfuncs: # p < 1.0
out = func(np.array([0.5]))
else:
out = func(self.argOne)
assert_equal(out.shape, self.tgtShape)
def test_two_arg_funcs(self):
funcs = (random.uniform, random.normal,
random.beta, random.gamma,
random.f, random.noncentral_chisquare,
random.vonmises, random.laplace,
random.gumbel, random.logistic,
random.lognormal, random.wald,
random.binomial, random.negative_binomial)
probfuncs = (random.binomial, random.negative_binomial)
for func in funcs:
if func in probfuncs: # p <= 1
argTwo = np.array([0.5])
else:
argTwo = self.argTwo
out = func(self.argOne, argTwo)
assert_equal(out.shape, self.tgtShape)
out = func(self.argOne[0], argTwo)
assert_equal(out.shape, self.tgtShape)
out = func(self.argOne, argTwo[0])
assert_equal(out.shape, self.tgtShape)
def test_three_arg_funcs(self):
funcs = [random.noncentral_f, random.triangular,
random.hypergeometric]
for func in funcs:
out = func(self.argOne, self.argTwo, self.argThree)
assert_equal(out.shape, self.tgtShape)
out = func(self.argOne[0], self.argTwo, self.argThree)
assert_equal(out.shape, self.tgtShape)
out = func(self.argOne, self.argTwo[0], self.argThree)
assert_equal(out.shape, self.tgtShape)
# Ensure returned array dtype is correct for platform
def test_integer_dtype(int_func):
random.seed(123456789)
fname, args, sha256 = int_func
f = getattr(random, fname)
actual = f(*args, size=2)
assert_(actual.dtype == np.dtype('l'))
def test_integer_repeat(int_func):
random.seed(123456789)
fname, args, sha256 = int_func
f = getattr(random, fname)
val = f(*args, size=1000000)
if sys.byteorder != 'little':
val = val.byteswap()
res = hashlib.sha256(val.view(np.int8)).hexdigest()
assert_(res == sha256)
def test_broadcast_size_error():
# GH-16833
with pytest.raises(ValueError):
random.binomial(1, [0.3, 0.7], size=(2, 1))
with pytest.raises(ValueError):
random.binomial([1, 2], 0.3, size=(2, 1))
with pytest.raises(ValueError):
random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
def test_randomstate_ctor_old_style_pickle():
rs = np.random.RandomState(MT19937(0))
rs.standard_normal(1)
# Directly call reduce which is used in pickling
ctor, args, state_a = rs.__reduce__()
# Simulate unpickling an old pickle that only has the name
assert args[:1] == ("MT19937",)
b = ctor(*args[:1])
b.set_state(state_a)
state_b = b.get_state(legacy=False)
assert_equal(state_a['bit_generator'], state_b['bit_generator'])
assert_array_equal(state_a['state']['key'], state_b['state']['key'])
assert_array_equal(state_a['state']['pos'], state_b['state']['pos'])
assert_equal(state_a['has_gauss'], state_b['has_gauss'])
assert_equal(state_a['gauss'], state_b['gauss'])
def test_hot_swap(restore_singleton_bitgen):
# GH 21808
def_bg = np.random.default_rng(0)
bg = def_bg.bit_generator
np.random.set_bit_generator(bg)
assert isinstance(np.random.mtrand._rand._bit_generator, type(bg))
second_bg = np.random.get_bit_generator()
assert bg is second_bg
def test_seed_alt_bit_gen(restore_singleton_bitgen):
# GH 21808
bg = PCG64(0)
np.random.set_bit_generator(bg)
state = np.random.get_state(legacy=False)
np.random.seed(1)
new_state = np.random.get_state(legacy=False)
print(state)
print(new_state)
assert state["bit_generator"] == "PCG64"
assert state["state"]["state"] != new_state["state"]["state"]
assert state["state"]["inc"] != new_state["state"]["inc"]
def test_state_error_alt_bit_gen(restore_singleton_bitgen):
# GH 21808
state = np.random.get_state()
bg = PCG64(0)
np.random.set_bit_generator(bg)
with pytest.raises(ValueError, match="state must be for a PCG64"):
np.random.set_state(state)
def test_swap_worked(restore_singleton_bitgen):
# GH 21808
np.random.seed(98765)
vals = np.random.randint(0, 2 ** 30, 10)
bg = PCG64(0)
state = bg.state
np.random.set_bit_generator(bg)
state_direct = np.random.get_state(legacy=False)
for field in state:
assert state[field] == state_direct[field]
np.random.seed(98765)
pcg_vals = np.random.randint(0, 2 ** 30, 10)
assert not np.all(vals == pcg_vals)
new_state = bg.state
assert new_state["state"]["state"] != state["state"]["state"]
assert new_state["state"]["inc"] == new_state["state"]["inc"]
def test_swapped_singleton_against_direct(restore_singleton_bitgen):
np.random.set_bit_generator(PCG64(98765))
singleton_vals = np.random.randint(0, 2 ** 30, 10)
rg = np.random.RandomState(PCG64(98765))
non_singleton_vals = rg.randint(0, 2 ** 30, 10)
assert_equal(non_singleton_vals, singleton_vals)