Your IP : 18.225.54.199
"""
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
platform-dependent information.
"""
import sys
import os
from numpy.core import dtype
from numpy.core import numerictypes as _numerictypes
from numpy.core.function_base import add_newdoc
##############################################################################
#
# Documentation for concrete scalar classes
#
##############################################################################
def numeric_type_aliases(aliases):
def type_aliases_gen():
for alias, doc in aliases:
try:
alias_type = getattr(_numerictypes, alias)
except AttributeError:
# The set of aliases that actually exist varies between platforms
pass
else:
yield (alias_type, alias, doc)
return list(type_aliases_gen())
possible_aliases = numeric_type_aliases([
('int8', '8-bit signed integer (``-128`` to ``127``)'),
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
('float96', '96-bit extended-precision floating-point number type'),
('float128', '128-bit extended-precision floating-point number type'),
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
])
def _get_platform_and_machine():
try:
system, _, _, _, machine = os.uname()
except AttributeError:
system = sys.platform
if system == 'win32':
machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
or os.environ.get('PROCESSOR_ARCHITECTURE', '')
else:
machine = 'unknown'
return system, machine
_system, _machine = _get_platform_and_machine()
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
# note: `:field: value` is rST syntax which renders as field lists.
o = getattr(_numerictypes, obj)
character_code = dtype(o).char
canonical_name_doc = "" if obj == o.__name__ else \
f":Canonical name: `numpy.{obj}`\n "
if fixed_aliases:
alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
for alias in fixed_aliases)
else:
alias_doc = ''
alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
docstring = f"""
{doc.strip()}
:Character code: ``'{character_code}'``
{canonical_name_doc}{alias_doc}
"""
add_newdoc('numpy.core.numerictypes', obj, docstring)
add_newdoc_for_scalar_type('bool_', [],
"""
Boolean type (True or False), stored as a byte.
.. warning::
The :class:`bool_` type is not a subclass of the :class:`int_` type
(the :class:`bool_` is not even a number type). This is different
than Python's default implementation of :class:`bool` as a
sub-class of :class:`int`.
""")
add_newdoc_for_scalar_type('byte', [],
"""
Signed integer type, compatible with C ``char``.
""")
add_newdoc_for_scalar_type('short', [],
"""
Signed integer type, compatible with C ``short``.
""")
add_newdoc_for_scalar_type('intc', [],
"""
Signed integer type, compatible with C ``int``.
""")
add_newdoc_for_scalar_type('int_', [],
"""
Signed integer type, compatible with Python `int` and C ``long``.
""")
add_newdoc_for_scalar_type('longlong', [],
"""
Signed integer type, compatible with C ``long long``.
""")
add_newdoc_for_scalar_type('ubyte', [],
"""
Unsigned integer type, compatible with C ``unsigned char``.
""")
add_newdoc_for_scalar_type('ushort', [],
"""
Unsigned integer type, compatible with C ``unsigned short``.
""")
add_newdoc_for_scalar_type('uintc', [],
"""
Unsigned integer type, compatible with C ``unsigned int``.
""")
add_newdoc_for_scalar_type('uint', [],
"""
Unsigned integer type, compatible with C ``unsigned long``.
""")
add_newdoc_for_scalar_type('ulonglong', [],
"""
Signed integer type, compatible with C ``unsigned long long``.
""")
add_newdoc_for_scalar_type('half', [],
"""
Half-precision floating-point number type.
""")
add_newdoc_for_scalar_type('single', [],
"""
Single-precision floating-point number type, compatible with C ``float``.
""")
add_newdoc_for_scalar_type('double', ['float_'],
"""
Double-precision floating-point number type, compatible with Python `float`
and C ``double``.
""")
add_newdoc_for_scalar_type('longdouble', ['longfloat'],
"""
Extended-precision floating-point number type, compatible with C
``long double`` but not necessarily with IEEE 754 quadruple-precision.
""")
add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
"""
Complex number type composed of two single-precision floating-point
numbers.
""")
add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
"""
Complex number type composed of two double-precision floating-point
numbers, compatible with Python `complex`.
""")
add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
"""
Complex number type composed of two extended-precision floating-point
numbers.
""")
add_newdoc_for_scalar_type('object_', [],
"""
Any Python object.
""")
add_newdoc_for_scalar_type('str_', ['unicode_'],
r"""
A unicode string.
This type strips trailing null codepoints.
>>> s = np.str_("abc\x00")
>>> s
'abc'
Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
contents as UCS4:
>>> m = memoryview(np.str_("abc"))
>>> m.format
'3w'
>>> m.tobytes()
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
""")
add_newdoc_for_scalar_type('bytes_', ['string_'],
r"""
A byte string.
When used in arrays, this type strips trailing null bytes.
""")
add_newdoc_for_scalar_type('void', [],
r"""
np.void(length_or_data, /, dtype=None)
Create a new structured or unstructured void scalar.
Parameters
----------
length_or_data : int, array-like, bytes-like, object
One of multiple meanings (see notes). The length or
bytes data of an unstructured void. Or alternatively,
the data to be stored in the new scalar when `dtype`
is provided.
This can be an array-like, in which case an array may
be returned.
dtype : dtype, optional
If provided the dtype of the new scalar. This dtype must
be "void" dtype (i.e. a structured or unstructured void,
see also :ref:`defining-structured-types`).
..versionadded:: 1.24
Notes
-----
For historical reasons and because void scalars can represent both
arbitrary byte data and structured dtypes, the void constructor
has three calling conventions:
1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
``\0`` bytes. The 5 can be a Python or NumPy integer.
2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
The dtype itemsize will match the byte string length, here ``"V10"``.
3. When a ``dtype=`` is passed the call is roughly the same as an
array creation. However, a void scalar rather than array is returned.
Please see the examples which show all three different conventions.
Examples
--------
>>> np.void(5)
void(b'\x00\x00\x00\x00\x00')
>>> np.void(b'abcd')
void(b'\x61\x62\x63\x64')
>>> np.void((5, 3.2, "eggs"), dtype="i,d,S5")
(5, 3.2, b'eggs') # looks like a tuple, but is `np.void`
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
(3, 3) # looks like a tuple, but is `np.void`
""")
add_newdoc_for_scalar_type('datetime64', [],
"""
If created from a 64-bit integer, it represents an offset from
``1970-01-01T00:00:00``.
If created from string, the string can be in ISO 8601 date
or datetime format.
>>> np.datetime64(10, 'Y')
numpy.datetime64('1980')
>>> np.datetime64('1980', 'Y')
numpy.datetime64('1980')
>>> np.datetime64(10, 'D')
numpy.datetime64('1970-01-11')
See :ref:`arrays.datetime` for more information.
""")
add_newdoc_for_scalar_type('timedelta64', [],
"""
A timedelta stored as a 64-bit integer.
See :ref:`arrays.datetime` for more information.
""")
add_newdoc('numpy.core.numerictypes', "integer", ('is_integer',
"""
integer.is_integer() -> bool
Return ``True`` if the number is finite with integral value.
.. versionadded:: 1.22
Examples
--------
>>> np.int64(-2).is_integer()
True
>>> np.uint32(5).is_integer()
True
"""))
# TODO: work out how to put this on the base class, np.floating
for float_name in ('half', 'single', 'double', 'longdouble'):
add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
"""
{ftype}.as_integer_ratio() -> (int, int)
Return a pair of integers, whose ratio is exactly equal to the original
floating point number, and with a positive denominator.
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
>>> np.{ftype}(10.0).as_integer_ratio()
(10, 1)
>>> np.{ftype}(0.0).as_integer_ratio()
(0, 1)
>>> np.{ftype}(-.25).as_integer_ratio()
(-1, 4)
""".format(ftype=float_name)))
add_newdoc('numpy.core.numerictypes', float_name, ('is_integer',
f"""
{float_name}.is_integer() -> bool
Return ``True`` if the floating point number is finite with integral
value, and ``False`` otherwise.
.. versionadded:: 1.22
Examples
--------
>>> np.{float_name}(-2.0).is_integer()
True
>>> np.{float_name}(3.2).is_integer()
False
"""))
for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
# Add negative examples for signed cases by checking typecode
add_newdoc('numpy.core.numerictypes', int_name, ('bit_count',
f"""
{int_name}.bit_count() -> int
Computes the number of 1-bits in the absolute value of the input.
Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
Examples
--------
>>> np.{int_name}(127).bit_count()
7""" +
(f"""
>>> np.{int_name}(-127).bit_count()
7
""" if dtype(int_name).char.islower() else "")))