Your IP : 3.16.47.126
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
# For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt
"""Results of coverage measurement."""
from __future__ import annotations
import collections
from typing import Callable, Dict, Iterable, List, Optional, Tuple, TYPE_CHECKING
from coverage.debug import AutoReprMixin
from coverage.exceptions import ConfigError
from coverage.misc import nice_pair
from coverage.types import TArc, TLineNo
if TYPE_CHECKING:
from coverage.data import CoverageData
from coverage.plugin import FileReporter
class Analysis:
"""The results of analyzing a FileReporter."""
def __init__(
self,
data: CoverageData,
precision: int,
file_reporter: FileReporter,
file_mapper: Callable[[str], str],
) -> None:
self.data = data
self.file_reporter = file_reporter
self.filename = file_mapper(self.file_reporter.filename)
self.statements = self.file_reporter.lines()
self.excluded = self.file_reporter.excluded_lines()
# Identify missing statements.
executed: Iterable[TLineNo]
executed = self.data.lines(self.filename) or []
executed = self.file_reporter.translate_lines(executed)
self.executed = executed
self.missing = self.statements - self.executed
if self.data.has_arcs():
self._arc_possibilities = sorted(self.file_reporter.arcs())
self.exit_counts = self.file_reporter.exit_counts()
self.no_branch = self.file_reporter.no_branch_lines()
n_branches = self._total_branches()
mba = self.missing_branch_arcs()
n_partial_branches = sum(len(v) for k,v in mba.items() if k not in self.missing)
n_missing_branches = sum(len(v) for k,v in mba.items())
else:
self._arc_possibilities = []
self.exit_counts = {}
self.no_branch = set()
n_branches = n_partial_branches = n_missing_branches = 0
self.numbers = Numbers(
precision=precision,
n_files=1,
n_statements=len(self.statements),
n_excluded=len(self.excluded),
n_missing=len(self.missing),
n_branches=n_branches,
n_partial_branches=n_partial_branches,
n_missing_branches=n_missing_branches,
)
def missing_formatted(self, branches: bool = False) -> str:
"""The missing line numbers, formatted nicely.
Returns a string like "1-2, 5-11, 13-14".
If `branches` is true, includes the missing branch arcs also.
"""
if branches and self.has_arcs():
arcs = self.missing_branch_arcs().items()
else:
arcs = None
return format_lines(self.statements, self.missing, arcs=arcs)
def has_arcs(self) -> bool:
"""Were arcs measured in this result?"""
return self.data.has_arcs()
def arc_possibilities(self) -> List[TArc]:
"""Returns a sorted list of the arcs in the code."""
return self._arc_possibilities
def arcs_executed(self) -> List[TArc]:
"""Returns a sorted list of the arcs actually executed in the code."""
executed: Iterable[TArc]
executed = self.data.arcs(self.filename) or []
executed = self.file_reporter.translate_arcs(executed)
return sorted(executed)
def arcs_missing(self) -> List[TArc]:
"""Returns a sorted list of the un-executed arcs in the code."""
possible = self.arc_possibilities()
executed = self.arcs_executed()
missing = (
p for p in possible
if p not in executed
and p[0] not in self.no_branch
and p[1] not in self.excluded
)
return sorted(missing)
def arcs_unpredicted(self) -> List[TArc]:
"""Returns a sorted list of the executed arcs missing from the code."""
possible = self.arc_possibilities()
executed = self.arcs_executed()
# Exclude arcs here which connect a line to itself. They can occur
# in executed data in some cases. This is where they can cause
# trouble, and here is where it's the least burden to remove them.
# Also, generators can somehow cause arcs from "enter" to "exit", so
# make sure we have at least one positive value.
unpredicted = (
e for e in executed
if e not in possible
and e[0] != e[1]
and (e[0] > 0 or e[1] > 0)
)
return sorted(unpredicted)
def _branch_lines(self) -> List[TLineNo]:
"""Returns a list of line numbers that have more than one exit."""
return [l1 for l1,count in self.exit_counts.items() if count > 1]
def _total_branches(self) -> int:
"""How many total branches are there?"""
return sum(count for count in self.exit_counts.values() if count > 1)
def missing_branch_arcs(self) -> Dict[TLineNo, List[TLineNo]]:
"""Return arcs that weren't executed from branch lines.
Returns {l1:[l2a,l2b,...], ...}
"""
missing = self.arcs_missing()
branch_lines = set(self._branch_lines())
mba = collections.defaultdict(list)
for l1, l2 in missing:
if l1 in branch_lines:
mba[l1].append(l2)
return mba
def executed_branch_arcs(self) -> Dict[TLineNo, List[TLineNo]]:
"""Return arcs that were executed from branch lines.
Returns {l1:[l2a,l2b,...], ...}
"""
executed = self.arcs_executed()
branch_lines = set(self._branch_lines())
eba = collections.defaultdict(list)
for l1, l2 in executed:
if l1 in branch_lines:
eba[l1].append(l2)
return eba
def branch_stats(self) -> Dict[TLineNo, Tuple[int, int]]:
"""Get stats about branches.
Returns a dict mapping line numbers to a tuple:
(total_exits, taken_exits).
"""
missing_arcs = self.missing_branch_arcs()
stats = {}
for lnum in self._branch_lines():
exits = self.exit_counts[lnum]
missing = len(missing_arcs[lnum])
stats[lnum] = (exits, exits - missing)
return stats
class Numbers(AutoReprMixin):
"""The numerical results of measuring coverage.
This holds the basic statistics from `Analysis`, and is used to roll
up statistics across files.
"""
def __init__(
self,
precision: int = 0,
n_files: int = 0,
n_statements: int = 0,
n_excluded: int = 0,
n_missing: int = 0,
n_branches: int = 0,
n_partial_branches: int = 0,
n_missing_branches: int = 0,
) -> None:
assert 0 <= precision < 10
self._precision = precision
self._near0 = 1.0 / 10**precision
self._near100 = 100.0 - self._near0
self.n_files = n_files
self.n_statements = n_statements
self.n_excluded = n_excluded
self.n_missing = n_missing
self.n_branches = n_branches
self.n_partial_branches = n_partial_branches
self.n_missing_branches = n_missing_branches
def init_args(self) -> List[int]:
"""Return a list for __init__(*args) to recreate this object."""
return [
self._precision,
self.n_files, self.n_statements, self.n_excluded, self.n_missing,
self.n_branches, self.n_partial_branches, self.n_missing_branches,
]
@property
def n_executed(self) -> int:
"""Returns the number of executed statements."""
return self.n_statements - self.n_missing
@property
def n_executed_branches(self) -> int:
"""Returns the number of executed branches."""
return self.n_branches - self.n_missing_branches
@property
def pc_covered(self) -> float:
"""Returns a single percentage value for coverage."""
if self.n_statements > 0:
numerator, denominator = self.ratio_covered
pc_cov = (100.0 * numerator) / denominator
else:
pc_cov = 100.0
return pc_cov
@property
def pc_covered_str(self) -> str:
"""Returns the percent covered, as a string, without a percent sign.
Note that "0" is only returned when the value is truly zero, and "100"
is only returned when the value is truly 100. Rounding can never
result in either "0" or "100".
"""
return self.display_covered(self.pc_covered)
def display_covered(self, pc: float) -> str:
"""Return a displayable total percentage, as a string.
Note that "0" is only returned when the value is truly zero, and "100"
is only returned when the value is truly 100. Rounding can never
result in either "0" or "100".
"""
if 0 < pc < self._near0:
pc = self._near0
elif self._near100 < pc < 100:
pc = self._near100
else:
pc = round(pc, self._precision)
return "%.*f" % (self._precision, pc)
def pc_str_width(self) -> int:
"""How many characters wide can pc_covered_str be?"""
width = 3 # "100"
if self._precision > 0:
width += 1 + self._precision
return width
@property
def ratio_covered(self) -> Tuple[int, int]:
"""Return a numerator and denominator for the coverage ratio."""
numerator = self.n_executed + self.n_executed_branches
denominator = self.n_statements + self.n_branches
return numerator, denominator
def __add__(self, other: Numbers) -> Numbers:
nums = Numbers(precision=self._precision)
nums.n_files = self.n_files + other.n_files
nums.n_statements = self.n_statements + other.n_statements
nums.n_excluded = self.n_excluded + other.n_excluded
nums.n_missing = self.n_missing + other.n_missing
nums.n_branches = self.n_branches + other.n_branches
nums.n_partial_branches = (
self.n_partial_branches + other.n_partial_branches
)
nums.n_missing_branches = (
self.n_missing_branches + other.n_missing_branches
)
return nums
def __radd__(self, other: int) -> Numbers:
# Implementing 0+Numbers allows us to sum() a list of Numbers.
assert other == 0 # we only ever call it this way.
return self
def _line_ranges(
statements: Iterable[TLineNo],
lines: Iterable[TLineNo],
) -> List[Tuple[TLineNo, TLineNo]]:
"""Produce a list of ranges for `format_lines`."""
statements = sorted(statements)
lines = sorted(lines)
pairs = []
start = None
lidx = 0
for stmt in statements:
if lidx >= len(lines):
break
if stmt == lines[lidx]:
lidx += 1
if not start:
start = stmt
end = stmt
elif start:
pairs.append((start, end))
start = None
if start:
pairs.append((start, end))
return pairs
def format_lines(
statements: Iterable[TLineNo],
lines: Iterable[TLineNo],
arcs: Optional[Iterable[Tuple[TLineNo, List[TLineNo]]]] = None,
) -> str:
"""Nicely format a list of line numbers.
Format a list of line numbers for printing by coalescing groups of lines as
long as the lines represent consecutive statements. This will coalesce
even if there are gaps between statements.
For example, if `statements` is [1,2,3,4,5,10,11,12,13,14] and
`lines` is [1,2,5,10,11,13,14] then the result will be "1-2, 5-11, 13-14".
Both `lines` and `statements` can be any iterable. All of the elements of
`lines` must be in `statements`, and all of the values must be positive
integers.
If `arcs` is provided, they are (start,[end,end,end]) pairs that will be
included in the output as long as start isn't in `lines`.
"""
line_items = [(pair[0], nice_pair(pair)) for pair in _line_ranges(statements, lines)]
if arcs is not None:
line_exits = sorted(arcs)
for line, exits in line_exits:
for ex in sorted(exits):
if line not in lines and ex not in lines:
dest = (ex if ex > 0 else "exit")
line_items.append((line, f"{line}->{dest}"))
ret = ", ".join(t[-1] for t in sorted(line_items))
return ret
def should_fail_under(total: float, fail_under: float, precision: int) -> bool:
"""Determine if a total should fail due to fail-under.
`total` is a float, the coverage measurement total. `fail_under` is the
fail_under setting to compare with. `precision` is the number of digits
to consider after the decimal point.
Returns True if the total should fail.
"""
# We can never achieve higher than 100% coverage, or less than zero.
if not (0 <= fail_under <= 100.0):
msg = f"fail_under={fail_under} is invalid. Must be between 0 and 100."
raise ConfigError(msg)
# Special case for fail_under=100, it must really be 100.
if fail_under == 100.0 and total != 100.0:
return True
return round(total, precision) < fail_under