Your IP : 18.224.64.51
Metadata-Version: 2.1
Name: charset-normalizer
Version: 2.1.1
Summary: The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet.
Home-page: https://github.com/ousret/charset_normalizer
Author: Ahmed TAHRI @Ousret
Author-email: ahmed.tahri@cloudnursery.dev
License: MIT
Project-URL: Bug Reports, https://github.com/Ousret/charset_normalizer/issues
Project-URL: Documentation, https://charset-normalizer.readthedocs.io/en/latest
Keywords: encoding,i18n,txt,text,charset,charset-detector,normalization,unicode,chardet
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: MIT License
Classifier: Intended Audience :: Developers
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Text Processing :: Linguistic
Classifier: Topic :: Utilities
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Typing :: Typed
Requires-Python: >=3.6.0
Description-Content-Type: text/markdown
License-File: LICENSE
Provides-Extra: unicode_backport
Requires-Dist: unicodedata2 ; extra == 'unicode_backport'
<h1 align="center">Charset Detection, for Everyone π <a href="https://twitter.com/intent/tweet?text=The%20Real%20First%20Universal%20Charset%20%26%20Language%20Detector&url=https://www.github.com/Ousret/charset_normalizer&hashtags=python,encoding,chardet,developers"><img src="https://img.shields.io/twitter/url/http/shields.io.svg?style=social"/></a></h1>
<p align="center">
<sup>The Real First Universal Charset Detector</sup><br>
<a href="https://pypi.org/project/charset-normalizer">
<img src="https://img.shields.io/pypi/pyversions/charset_normalizer.svg?orange=blue" />
</a>
<a href="https://codecov.io/gh/Ousret/charset_normalizer">
<img src="https://codecov.io/gh/Ousret/charset_normalizer/branch/master/graph/badge.svg" />
</a>
<a href="https://pepy.tech/project/charset-normalizer/">
<img alt="Download Count Total" src="https://pepy.tech/badge/charset-normalizer/month" />
</a>
</p>
> A library that helps you read text from an unknown charset encoding.<br /> Motivated by `chardet`,
> I'm trying to resolve the issue by taking a new approach.
> All IANA character set names for which the Python core library provides codecs are supported.
<p align="center">
>>>>> <a href="https://charsetnormalizerweb.ousret.now.sh" target="_blank">π Try Me Online Now, Then Adopt Me π </a> <<<<<
</p>
This project offers you an alternative to **Universal Charset Encoding Detector**, also known as **Chardet**.
| Feature | [Chardet](https://github.com/chardet/chardet) | Charset Normalizer | [cChardet](https://github.com/PyYoshi/cChardet) |
| ------------- | :-------------: | :------------------: | :------------------: |
| `Fast` | β<br> | β
<br> | β
<br> |
| `Universal**` | β | β
| β |
| `Reliable` **without** distinguishable standards | β | β
| β
|
| `Reliable` **with** distinguishable standards | β
| β
| β
|
| `License` | LGPL-2.1<br>_restrictive_ | MIT | MPL-1.1<br>_restrictive_ |
| `Native Python` | β
| β
| β |
| `Detect spoken language` | β | β
| N/A |
| `UnicodeDecodeError Safety` | β | β
| β |
| `Whl Size` | 193.6 kB | 39.5 kB | ~200 kB |
| `Supported Encoding` | 33 | :tada: [93](https://charset-normalizer.readthedocs.io/en/latest/user/support.html#supported-encodings) | 40
<p align="center">
<img src="https://i.imgflip.com/373iay.gif" alt="Reading Normalized Text" width="226"/><img src="https://media.tenor.com/images/c0180f70732a18b4965448d33adba3d0/tenor.gif" alt="Cat Reading Text" width="200"/>
*\*\* : They are clearly using specific code for a specific encoding even if covering most of used one*<br>
Did you got there because of the logs? See [https://charset-normalizer.readthedocs.io/en/latest/user/miscellaneous.html](https://charset-normalizer.readthedocs.io/en/latest/user/miscellaneous.html)
## β Your support
*Fork, test-it, star-it, submit your ideas! We do listen.*
## β‘ Performance
This package offer better performance than its counterpart Chardet. Here are some numbers.
| Package | Accuracy | Mean per file (ms) | File per sec (est) |
| ------------- | :-------------: | :------------------: | :------------------: |
| [chardet](https://github.com/chardet/chardet) | 86 % | 200 ms | 5 file/sec |
| charset-normalizer | **98 %** | **39 ms** | 26 file/sec |
| Package | 99th percentile | 95th percentile | 50th percentile |
| ------------- | :-------------: | :------------------: | :------------------: |
| [chardet](https://github.com/chardet/chardet) | 1200 ms | 287 ms | 23 ms |
| charset-normalizer | 400 ms | 200 ms | 15 ms |
Chardet's performance on larger file (1MB+) are very poor. Expect huge difference on large payload.
> Stats are generated using 400+ files using default parameters. More details on used files, see GHA workflows.
> And yes, these results might change at any time. The dataset can be updated to include more files.
> The actual delays heavily depends on your CPU capabilities. The factors should remain the same.
> Keep in mind that the stats are generous and that Chardet accuracy vs our is measured using Chardet initial capability
> (eg. Supported Encoding) Challenge-them if you want.
[cchardet](https://github.com/PyYoshi/cChardet) is a non-native (cpp binding) and unmaintained faster alternative with
a better accuracy than chardet but lower than this package. If speed is the most important factor, you should try it.
## β¨ Installation
Using PyPi for latest stable
```sh
pip install charset-normalizer -U
```
If you want a more up-to-date `unicodedata` than the one available in your Python setup.
```sh
pip install charset-normalizer[unicode_backport] -U
```
## π Basic Usage
### CLI
This package comes with a CLI.
```
usage: normalizer [-h] [-v] [-a] [-n] [-m] [-r] [-f] [-t THRESHOLD]
file [file ...]
The Real First Universal Charset Detector. Discover originating encoding used
on text file. Normalize text to unicode.
positional arguments:
files File(s) to be analysed
optional arguments:
-h, --help show this help message and exit
-v, --verbose Display complementary information about file if any.
Stdout will contain logs about the detection process.
-a, --with-alternative
Output complementary possibilities if any. Top-level
JSON WILL be a list.
-n, --normalize Permit to normalize input file. If not set, program
does not write anything.
-m, --minimal Only output the charset detected to STDOUT. Disabling
JSON output.
-r, --replace Replace file when trying to normalize it instead of
creating a new one.
-f, --force Replace file without asking if you are sure, use this
flag with caution.
-t THRESHOLD, --threshold THRESHOLD
Define a custom maximum amount of chaos allowed in
decoded content. 0. <= chaos <= 1.
--version Show version information and exit.
```
```bash
normalizer ./data/sample.1.fr.srt
```
:tada: Since version 1.4.0 the CLI produce easily usable stdout result in JSON format.
```json
{
"path": "/home/default/projects/charset_normalizer/data/sample.1.fr.srt",
"encoding": "cp1252",
"encoding_aliases": [
"1252",
"windows_1252"
],
"alternative_encodings": [
"cp1254",
"cp1256",
"cp1258",
"iso8859_14",
"iso8859_15",
"iso8859_16",
"iso8859_3",
"iso8859_9",
"latin_1",
"mbcs"
],
"language": "French",
"alphabets": [
"Basic Latin",
"Latin-1 Supplement"
],
"has_sig_or_bom": false,
"chaos": 0.149,
"coherence": 97.152,
"unicode_path": null,
"is_preferred": true
}
```
### Python
*Just print out normalized text*
```python
from charset_normalizer import from_path
results = from_path('./my_subtitle.srt')
print(str(results.best()))
```
*Normalize any text file*
```python
from charset_normalizer import normalize
try:
normalize('./my_subtitle.srt') # should write to disk my_subtitle-***.srt
except IOError as e:
print('Sadly, we are unable to perform charset normalization.', str(e))
```
*Upgrade your code without effort*
```python
from charset_normalizer import detect
```
The above code will behave the same as **chardet**. We ensure that we offer the best (reasonable) BC result possible.
See the docs for advanced usage : [readthedocs.io](https://charset-normalizer.readthedocs.io/en/latest/)
## π Why
When I started using Chardet, I noticed that it was not suited to my expectations, and I wanted to propose a
reliable alternative using a completely different method. Also! I never back down on a good challenge!
I **don't care** about the **originating charset** encoding, because **two different tables** can
produce **two identical rendered string.**
What I want is to get readable text, the best I can.
In a way, **I'm brute forcing text decoding.** How cool is that ? π
Don't confuse package **ftfy** with charset-normalizer or chardet. ftfy goal is to repair unicode string whereas charset-normalizer to convert raw file in unknown encoding to unicode.
## π° How
- Discard all charset encoding table that could not fit the binary content.
- Measure chaos, or the mess once opened (by chunks) with a corresponding charset encoding.
- Extract matches with the lowest mess detected.
- Additionally, we measure coherence / probe for a language.
**Wait a minute**, what is chaos/mess and coherence according to **YOU ?**
*Chaos :* I opened hundred of text files, **written by humans**, with the wrong encoding table. **I observed**, then
**I established** some ground rules about **what is obvious** when **it seems like** a mess.
I know that my interpretation of what is chaotic is very subjective, feel free to contribute in order to
improve or rewrite it.
*Coherence :* For each language there is on earth, we have computed ranked letter appearance occurrences (the best we can). So I thought
that intel is worth something here. So I use those records against decoded text to check if I can detect intelligent design.
## β‘ Known limitations
- Language detection is unreliable when text contains two or more languages sharing identical letters. (eg. HTML (english tags) + Turkish content (Sharing Latin characters))
- Every charset detector heavily depends on sufficient content. In common cases, do not bother run detection on very tiny content.
## π€ Contributing
Contributions, issues and feature requests are very much welcome.<br />
Feel free to check [issues page](https://github.com/ousret/charset_normalizer/issues) if you want to contribute.
## π License
Copyright Β© 2019 [Ahmed TAHRI @Ousret](https://github.com/Ousret).<br />
This project is [MIT](https://github.com/Ousret/charset_normalizer/blob/master/LICENSE) licensed.
Characters frequencies used in this project Β© 2012 [Denny VrandeΔiΔ](http://simia.net/letters/)