Your IP : 18.222.161.57
#!/opt/cloudlinux/venv/bin/python3
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 2008-2016 California Institute of Technology.
# Copyright (c) 2016-2023 The Uncertainty Quantification Foundation.
# License: 3-clause BSD. The full license text is available at:
# - https://github.com/uqfoundation/dill/blob/master/LICENSE
"""
display the reference paths for objects in ``dill.types`` or a .pkl file
Notes:
the generated image is useful in showing the pointer references in
objects that are or can be pickled. Any object in ``dill.objects``
listed in ``dill.load_types(picklable=True, unpicklable=True)`` works.
Examples::
$ get_objgraph ArrayType
Image generated as ArrayType.png
"""
import dill as pickle
#pickle.debug.trace(True)
#import pickle
# get all objects for testing
from dill import load_types
load_types(pickleable=True,unpickleable=True)
from dill import objects
if __name__ == "__main__":
import sys
if len(sys.argv) != 2:
print ("Please provide exactly one file or type name (e.g. 'IntType')")
msg = "\n"
for objtype in list(objects.keys())[:40]:
msg += objtype + ', '
print (msg + "...")
else:
objtype = str(sys.argv[-1])
try:
obj = objects[objtype]
except KeyError:
obj = pickle.load(open(objtype,'rb'))
import os
objtype = os.path.splitext(objtype)[0]
try:
import objgraph
objgraph.show_refs(obj, filename=objtype+'.png')
except ImportError:
print ("Please install 'objgraph' to view object graphs")
# EOF