Your IP : 18.191.192.113
a
R�fb( � @ s� d Z ddlmZmZ g d�ZG dd� ded�ZG dd� de�Ze�e� G d d
� d
e�Z e �e
� G dd� de �ZG d
d� de�Ze�e
� dS )z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
TODO: Fill out more detailed documentation on the operators.� )�ABCMeta�abstractmethod)�Number�Complex�Real�Rational�Integralc @ s e Zd ZdZdZdZdS )r z�All numbers inherit from this class.
If you just want to check if an argument x is a number, without
caring what kind, use isinstance(x, Number).
� N)�__name__�
__module__�__qualname__�__doc__� __slots__�__hash__r r r �,/opt/alt/python39/lib64/python3.9/numbers.pyr s r )� metaclassc @ s� e Zd ZdZdZedd� �Zdd� Zeedd� ��Z eed d
� ��Z
edd� �Zed
d� �Zedd� �Z
edd� �Zdd� Zdd� Zedd� �Zedd� �Zedd� �Zedd� �Zedd � �Zed!d"� �Zed#d$� �Zed%d&� �Zed'd(� �Zd)S )*r af Complex defines the operations that work on the builtin complex type.
In short, those are: a conversion to complex, .real, .imag, +, -,
*, /, **, abs(), .conjugate, ==, and !=.
If it is given heterogeneous arguments, and doesn't have special
knowledge about them, it should fall back to the builtin complex
type as described below.
r c C s dS )z<Return a builtin complex instance. Called for complex(self).Nr ��selfr r r �__complex__- s zComplex.__complex__c C s | dkS )z)True if self != 0. Called for bool(self).r r r r r r �__bool__1 s zComplex.__bool__c C s t �dS )zXRetrieve the real component of this number.
This should subclass Real.
N��NotImplementedErrorr r r r �real5 s zComplex.realc C s t �dS )z]Retrieve the imaginary component of this number.
This should subclass Real.
Nr r r r r �imag>