Your IP : 18.223.170.253


Current Path : /opt/alt/python311/lib64/python3.11/__pycache__/
Upload File :
Current File : //opt/alt/python311/lib64/python3.11/__pycache__/statistics.cpython-311.opt-1.pyc

�

c��fY���v�UdZgd�ZddlZddlZddlZddlZddlmZddlm	Z	ddl
mZmZddl
mZmZddlmZmZmZmZmZmZmZmZdd	lmZdd
lmZddlmZmZmZed��Z Gd
�de!��Z"d�Z#d?d�Z$d�Z%d�Z&d�Z'd�Z(d@d�Z)de*de*de*fd�Z+dej,j-zdzZ.e*e/d<de*de*de0fd�Z1de*de*de	fd�Z2d �Z3d?d!�Z4d"�Z5d?d#�Z6d$�Z7d%�Z8d&�Z9dAd(�Z:d)�Z;d*�Z<d+d,d-�d.�Z=d?d/�Z>d?d0�Z?d?d1�Z@d?d2�ZAd3�ZBd4�ZCd5�ZDed6d7��ZEd8d9�d:�ZFd;�ZG	dd<lHmGZGn#eI$rYnwxYwGd=�d>��ZJdS)Ba�

Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  ==================================================
Function            Description
==================  ==================================================
mean                Arithmetic mean (average) of data.
fmean               Fast, floating point arithmetic mean.
geometric_mean      Geometric mean of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
multimode           List of modes (most common values of data).
quantiles           Divide data into intervals with equal probability.
==================  ==================================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Statistics for relations between two inputs
-------------------------------------------

==================  ====================================================
Function            Description
==================  ====================================================
covariance          Sample covariance for two variables.
correlation         Pearson's correlation coefficient for two variables.
linear_regression   Intercept and slope for simple linear regression.
==================  ====================================================

Calculate covariance, Pearson's correlation, and simple linear regression
for two inputs:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> correlation(x, y)  #doctest: +ELLIPSIS
0.31622776601...
>>> linear_regression(x, y)  #doctest:
LinearRegression(slope=0.1, intercept=1.5)


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

)�
NormalDist�StatisticsError�correlation�
covariance�fmean�geometric_mean�
harmonic_mean�linear_regression�mean�median�median_grouped�median_high�
median_low�mode�	multimode�pstdev�	pvariance�	quantiles�stdev�variance�N��Fraction)�Decimal)�groupby�repeat)�bisect_left�bisect_right)�hypot�sqrt�fabs�exp�erf�tau�log�fsum)�reduce)�mul)�Counter�
namedtuple�defaultdict�@c��eZdZdS)rN)�__name__�
__module__�__qualname__���1/opt/alt/python311/lib64/python3.11/statistics.pyrr�s�������Dr1rc��d}t��}|j}i}|j}t|t��D]B\}}||��tt|��D]\}}	|dz
}||	d��|z||	<��Cd|vr	|d}
n+td�|���D����}
tt|t��}||
|fS)a�_sum(data) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
    (<class 'float'>, Fraction(19, 2), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    r�Nc3�<K�|]\}}t||��V��dS�Nr��.0�d�ns   r2�	<genexpr>z_sum.<locals>.<genexpr>�s.����@�@�t�q�!�H�Q��N�N�@�@�@�@�@�@r1)�set�add�getr�type�map�_exact_ratio�sum�itemsr&�_coerce�int)�data�count�types�	types_add�partials�partials_get�typ�valuesr:r9�total�Ts            r2�_sumrP�s���@
�E��E�E�E��	�I��H��<�L��t�T�*�*�1�1���V��	�#������f�-�-�	1�	1�D�A�q��Q�J�E�&�,�q�!�,�,�q�0�H�Q�K�K�	1��x���������@�@�x�~�~�/?�/?�@�@�@�@�@���w��s�#�#�A�
�u�e��r1c������&t��fd�|D����\}}}||�|fSd}t��}|j}tt��}tt��}t|t��D]S\}	}
||	��tt|
��D]-\}�|dz
}|�xx|z
cc<|�xx||zz
cc<�.�T|std��x}�nxd|vr|dx}�nitd�|���D����}td�|���D����}
||
z||zz
|z}||z�tt|t��}||�|fS)a3Return the exact mean and sum of square deviations of sequence data.

    Calculations are done in a single pass, allowing the input to be an iterator.

    If given *c* is used the mean; otherwise, it is calculated from the data.
    Use the *c* argument with care, as it can lead to garbage results.

    Nc3�,�K�|]}|�z
x��zV��dSr6r0)r8�x�cr9s  ��r2r;z_ss.<locals>.<genexpr>�s0�����<�<�!�1�q�5�j�a�A�-�<�<�<�<�<�<r1rr4c3�<K�|]\}}t||��V��dSr6rr7s   r2r;z_ss.<locals>.<genexpr>�s.����@�@�D�A�q��!�Q���@�@�@�@�@�@r1c3�BK�|]\}}t|||z��V��dSr6rr7s   r2r;z_ss.<locals>.<genexpr>�s4����D�D�t�q�!�(�1�a��c�"�"�D�D�D�D�D�Dr1)rPr<r=r*rErr?r@rArrBrCr&rD)rFrTrO�ssdrGrHrI�sx_partials�sxx_partialsrLrMr:�sx�sxxr9s `            @r2�_ssr\�s�����	�}��<�<�<�<�<�t�<�<�<�<�<�
��3���3��5�!�!�
�E��E�E�E��	�I��c�"�"�K��s�#�#�L��t�T�*�*�%�%���V��	�#������f�-�-�	%�	%�D�A�q��Q�J�E���N�N�N�a��N�N�N���O�O�O�q�1�u�$�O�O�O�O�	%��
��1�+�+���a�a�	
��	�	��d�#�#��a�a��@�@�K�,=�,=�,?�,?�@�@�@�
@�
@���D�D�|�/A�/A�/C�/C�D�D�D�D�D���s�{�R�"�W�$��-����J���w��s�#�#�A�
�s�A�u��r1c�t�	|���S#t$rtj|��cYSwxYwr6)�	is_finite�AttributeError�math�isfinite)rSs r2�	_isfiniterb�sF�� ��{�{�}�}���� � � ��}�Q������ ���s��7�7c���||ur|S|tus	|tur|S|tur|St||��r|St||��r|St|t��r|St|t��r|St|t��rt|t��r|St|t��rt|t��r|Sd}t||j|jfz���)z�Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    z"don't know how to coerce %s and %s)rE�bool�
issubclassr�float�	TypeErrorr-)rO�S�msgs   r2rDrDs���	�A�v�v�q���C�x�x�1��9�9�a�x��C�x�x��(��!�Q���"��(��!�Q���"��(��!�S���$�1�H��!�S���$�1�H��!�X����:�a��#7�#7�����!�U����
�1�h� 7� 7����
.�C�
�C�1�:�q�z�2�2�
3�
3�3r1c��	|���S#t$rYnttf$r|dfcYSwxYw	|j|jfS#t$r(dt
|��j�d�}t|���wxYw)z�Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    Nzcan't convert type 'z' to numerator/denominator)	�as_integer_ratior_�
OverflowError�
ValueError�	numerator�denominatorr?r-rg)rSris  r2rArAs���<��!�!�#�#�#���
�
�
����:�&�����4�y�����������Q�]�+�+������Q�T�!�W�W�%5�Q�Q�Q����n�n�����s��
9�9�9�
A�2A=c��t|��|ur|St|t��r|jdkrt}	||��S#t
$r:t|t��r#||j��||j��zcYS�wxYw)z&Convert value to given numeric type T.r4)r?rerErorfrgrrn)�valuerOs  r2�_convertrrMs����E�{�{�a������!�S����e�/�1�4�4�����q��x�x��������a��!�!�	��1�U�_�%�%���%�*;�(<�(<�<�<�<�<��	���s�
A�AB�	B�negative valuec#�FK�|D]}|dkrt|���|V��dS)z7Iterate over values, failing if any are less than zero.rN)r)rM�errmsgrSs   r2�	_fail_negrv_sA����
�����q�5�5�!�&�)�)�)�������r1r:�m�returnc�N�tj||z��}|||z|z|kzS)zFSquare root of n/m, rounded to the nearest integer using round-to-odd.)r`�isqrt)r:rw�as   r2�_integer_sqrt_of_frac_rtor|gs.��	
�
�1��6���A���!��A���
��r1���_sqrt_bit_widthc���|���|���z
tz
dz}|dkrt||d|zz��|z}d}nt|d|zz|��}d|z}||zS)z1Square root of n/m as a float, correctly rounded.r}rr4���)�
bit_lengthrr|)r:rw�qrnros     r2�_float_sqrt_of_fracr�ss���
�����!�,�,�.�.�	(�?�	:�q�@�A��A�v�v�-�a��a�!�e��<�<��A�	����-�a�2��6�k�1�=�=�	��A�2�g���{�"�"r1c��|dkr|std��S||}}t|��t|��z���}|���\}}|���}|���\}}d|z||zdzz|||z||zzdzzkr|S|���}|���\}	}
d|z||
zdzz|||	z|
|zzdzzkr|S|S)z3Square root of n/m as a Decimal, correctly rounded.rz0.0�r})rrrk�	next_plus�
next_minus)r:rw�root�nr�dr�plus�np�dp�minus�nm�dms           r2�_decimal_sqrt_of_fracr��s ��
	�A�v�v��	"��5�>�>�!��r�A�2�1���A�J�J�����#�)�)�+�+�D�
�
"�
"�
$�
$�F�B���>�>���D�
�
"�
"�
$�
$�F�B���1�u��2���z��A��B���B���� 2�2�2�2����O�O���E�
�
#�
#�
%�
%�F�B���1�u��2���z��A��B���B���� 2�2�2�2����Kr1c�x�t|��\}}}|dkrtd���t||z|��S)a�Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    r4z%mean requires at least one data point)rPrrr)rFrOrNr:s    r2r
r
�sA�� �t�*�*�K�A�u�a��1�u�u��E�F�F�F��E�A�I�q�!�!�!r1c����	t|���n"#t$rd��fd�}||��}YnwxYw|�%t|��}�std���|�zS	t|��}n.#t$r!t	|��}t|��}YnwxYwttt||����}�|krtd���t|��}|std���||zS)z�Convert data to floats and compute the arithmetic mean.

    This runs faster than the mean() function and it always returns a float.
    If the input dataset is empty, it raises a StatisticsError.

    >>> fmean([3.5, 4.0, 5.25])
    4.25
    rc3�B�K�t|d���D]	\�}|V��
dS)Nr4)�start)�	enumerate)�iterablerSr:s  �r2rGzfmean.<locals>.count�s<�����!�(�!�4�4�4�
�
���1������
�
r1Nz&fmean requires at least one data pointz(data and weights must be the same lengthzsum of weights must be non-zero)�lenrgr%r�listr@r')rF�weightsrGrN�num_weights�num�denr:s       @r2rr�s>���	���I�I��������
��	�	�	�	�	��u�T�{�{�����������T�
�
���	L�!�"J�K�K�K��q�y��#��'�l�l�����#�#�#��w�-�-���'�l�l����#�����s�3��g�&�&�
'�
'�C��K����H�I�I�I�
�w�-�-�C��A��?�@�@�@���9�s��2�2�A-�-(B�Bc��	tttt|������S#t$rtd��d�wxYw)aYConvert data to floats and compute the geometric mean.

    Raises a StatisticsError if the input dataset is empty,
    if it contains a zero, or if it contains a negative value.

    No special efforts are made to achieve exact results.
    (However, this may change in the future.)

    >>> round(geometric_mean([54, 24, 36]), 9)
    36.0
    zGgeometric mean requires a non-empty dataset containing positive numbersN)r!rr@r$rmr)rFs r2rr�s`��G��5��S�$���(�(�)�)�)���G�G�G��<�=�=�BF�	G�G���s	�.1�Ac�,�t|��|urt|��}d}t|��}|dkrtd���|dkrQ|�O|d}t	|t
jtf��r|dkrt|���|Std���|�td|��}|}nmt|��|urt|��}t|��|krtd���td�t||��D����\}}}	t||��}td	�t||��D����\}}}	n#t$rYdSwxYw|dkrtd
���t||z|��S)a�Return the harmonic mean of data.

    The harmonic mean is the reciprocal of the arithmetic mean of the
    reciprocals of the data.  It can be used for averaging ratios or
    rates, for example speeds.

    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
    60 km/hr for another 5 km. What is the average speed?

        >>> harmonic_mean([40, 60])
        48.0

    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
    is the average speed?

        >>> harmonic_mean([40, 60], weights=[5, 30])
        56.0

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    z.harmonic mean does not support negative valuesr4z.harmonic_mean requires at least one data pointNrzunsupported typez*Number of weights does not match data sizec3�K�|]}|V��dSr6r0)r8�ws  r2r;z harmonic_mean.<locals>.<genexpr>s"���� G� G�q�� G� G� G� G� G� Gr1c3�.K�|]\}}|r||zndV��dS)rNr0)r8r�rSs   r2r;z harmonic_mean.<locals>.<genexpr>s3����P�P�T�Q���0�q�1�u�u�q�P�P�P�P�P�Pr1zWeighted sum must be positive)�iterr�r�r�
isinstance�numbers�RealrrgrrPrv�zip�ZeroDivisionErrorrr)
rFr�rur:rS�sum_weights�_rOrNrGs
          r2rr�s���.�D�z�z�T����D�z�z��
=�F��D�	�	�A��1�u�u��N�O�O�O�	
�a���G�O���G���a�'�,��0�1�1�	0��1�u�u�%�f�-�-�-��H��.�/�/�/�����A�,�,�������=�=�G�#�#��7�m�m�G��w�<�<�1���!�"N�O�O�O� � G� G�I�g�v�,F�,F� G� G� G�G�G���;�����v�&�&���P�P�S��$�=O�=O�P�P�P�P�P���5�%�%�������q�q�������z�z��=�>�>�>��K�%�'��+�+�+s�!;E�
E+�*E+c���t|��}t|��}|dkrtd���|dzdkr||dzS|dz}||dz
||zdzS)aBReturn the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    r�no median for empty datar}r4��sortedr�r)rFr:�is   r2rr%sr���$�<�<�D��D�	�	�A��A�v�v��8�9�9�9��1�u��z�z��A��F�|��
��F���Q��U��d�1�g�%��*�*r1c��t|��}t|��}|dkrtd���|dzdkr||dzS||dzdz
S)a	Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    rr�r}r4r��rFr:s  r2rr=s`���$�<�<�D��D�	�	�A��A�v�v��8�9�9�9��1�u��z�z��A��F�|���A��F�Q�J��r1c�~�t|��}t|��}|dkrtd���||dzS)aReturn the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    rr�r}r�r�s  r2r
r
Ss@���$�<�<�D��D�	�	�A��A�v�v��8�9�9�9���Q��<�r1��?c�t�t|��}t|��}|std���||dz}t||��}t	|||���}	t|��}t|��}n#t$rtd���wxYw||dzz
}|}||z
}|||dz|z
z|zzS)a�Estimates the median for numeric data binned around the midpoints
    of consecutive, fixed-width intervals.

    The *data* can be any iterable of numeric data with each value being
    exactly the midpoint of a bin.  At least one value must be present.

    The *interval* is width of each bin.

    For example, demographic information may have been summarized into
    consecutive ten-year age groups with each group being represented
    by the 5-year midpoints of the intervals:

        >>> demographics = Counter({
        ...    25: 172,   # 20 to 30 years old
        ...    35: 484,   # 30 to 40 years old
        ...    45: 387,   # 40 to 50 years old
        ...    55:  22,   # 50 to 60 years old
        ...    65:   6,   # 60 to 70 years old
        ... })

    The 50th percentile (median) is the 536th person out of the 1071
    member cohort.  That person is in the 30 to 40 year old age group.

    The regular median() function would assume that everyone in the
    tricenarian age group was exactly 35 years old.  A more tenable
    assumption is that the 484 members of that age group are evenly
    distributed between 30 and 40.  For that, we use median_grouped().

        >>> data = list(demographics.elements())
        >>> median(data)
        35
        >>> round(median_grouped(data, interval=10), 1)
        37.5

    The caller is responsible for making sure the data points are separated
    by exact multiples of *interval*.  This is essential for getting a
    correct result.  The function does not check this precondition.

    Inputs may be any numeric type that can be coerced to a float during
    the interpolation step.

    r�r})�loz$Value cannot be converted to a floatr+)r�r�rrrrfrmrg)	rF�intervalr:rSr��j�L�cf�fs	         r2rrfs���V�$�<�<�D��D�	�	�A��:��8�9�9�9�	
�Q�!�V��A�	�D�!���A��T�1��#�#�#�A�A���?�?���!�H�H�����A�A�A��?�@�@�@�A����
	
�H�s�N��A�	
�B�	�A��A��x�1�q�5�2�:�&��*�*�*s�A=�=Bc��tt|�����d��}	|ddS#t$rt	d��d�wxYw)axReturn the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
        3

    This also works with nominal (non-numeric) data:

        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
        'red'

    If there are multiple modes with same frequency, return the first one
    encountered:

        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
        'red'

    If *data* is empty, ``mode``, raises StatisticsError.

    r4rzno mode for empty dataN)r(r��most_common�
IndexErrorr)rF�pairss  r2rr�si��.
�D��J�J���+�+�A�.�.�E�B��Q�x��{����B�B�B��6�7�7�T�A�B���s	�
?�Ac����tt|����}|sgSt|�������fd�|���D��S)a.Return a list of the most frequently occurring values.

    Will return more than one result if there are multiple modes
    or an empty list if *data* is empty.

    >>> multimode('aabbbbbbbbcc')
    ['b']
    >>> multimode('aabbbbccddddeeffffgg')
    ['b', 'd', 'f']
    >>> multimode('')
    []
    c�&��g|]
\}}|�k�|��Sr0r0)r8rqrG�maxcounts   �r2�
<listcomp>zmultimode.<locals>.<listcomp>�s'���J�J�J�l�e�U���8I�8I�E�8I�8I�8Ir1)r(r��maxrMrC)rF�countsr�s  @r2rr�s\����T�$�Z�Z�
 �
 �F����	��6�=�=�?�?�#�#�H�J�J�J�J�f�l�l�n�n�J�J�J�Jr1r��	exclusive)r:�methodc��|dkrtd���t|��}t|��}|dkrtd���|dkrg|dz
}g}td|��D]M}t	||z|��\}}||||z
z||dz|zz|z}	|�|	���N|S|dkr||dz}g}td|��D]b}||z|z}|dkrdn||dz
kr|dz
n|}||z||zz
}||dz
||z
z|||zz|z}	|�|	���c|St
d|�����)a�Divide *data* into *n* continuous intervals with equal probability.

    Returns a list of (n - 1) cut points separating the intervals.

    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
    Set *n* to 100 for percentiles which gives the 99 cuts points that
    separate *data* in to 100 equal sized groups.

    The *data* can be any iterable containing sample.
    The cut points are linearly interpolated between data points.

    If *method* is set to *inclusive*, *data* is treated as population
    data.  The minimum value is treated as the 0th percentile and the
    maximum value is treated as the 100th percentile.
    r4zn must be at least 1r}z"must have at least two data points�	inclusiver�zUnknown method: )rr�r��range�divmod�appendrm)
rFr:r��ldrw�resultr�r��delta�interpolateds
          r2rrs��� 	�1�u�u��4�5�5�5��$�<�<�D�	�T���B�	�A�v�v��B�C�C�C�
������F�����q�!���	(�	(�A��a�!�e�Q�'�'�H�A�u� ��G�q�5�y�1�D��Q��K�%�4G�G�1�L�L��M�M�,�'�'�'�'��
�
������F�����q�!���	(�	(�A��A���
�A���U�U����B�q�D����1���a�A��a�C�!�A�#�I�E� ��Q��K�1�u�9�5��Q��%��G�1�L�L��M�M�,�'�'�'�'��
�
�2��2�2�
3�
3�3r1c��t||��\}}}}|dkrtd���t||dz
z|��S)a�Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    r}z*variance requires at least two data pointsr4�r\rrr)rF�xbarrO�ssrTr:s      r2rr6sJ��L�d�D�/�/�K�A�r�1�a��1�u�u��J�K�K�K��B�!�a�%�L�!�$�$�$r1c�|�t||��\}}}}|dkrtd���t||z|��S)a,Return the population variance of ``data``.

    data should be a sequence or iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    r4z*pvariance requires at least one data pointr�)rF�murOr�rTr:s      r2rrbsF��F�d�B�-�-�K�A�r�1�a��1�u�u��J�K�K�K��B��F�A���r1c��t||��\}}}}|dkrtd���||dz
z}t|t��rt	|j|j��St|j|j��S)z�Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    r}�'stdev requires at least two data pointsr4�r\rrerr�rnror�)rFr�rOr�rTr:�msss       r2rr�sy���d�D�/�/�K�A�r�1�a��1�u�u��G�H�H�H�
��A��,�C��!�W���E�$�S�]�C�O�D�D�D��s�}�c�o�>�>�>r1c���t||��\}}}}|dkrtd���||z}t|t��rt	|j|j��St|j|j��S)z�Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    r4z'pstdev requires at least one data pointr�)rFr�rOr�rTr:r�s       r2rr�su���d�B�-�-�K�A�r�1�a��1�u�u��G�H�H�H�
�q�&�C��!�W���E�$�S�]�C�O�D�D�D��s�}�c�o�>�>�>r1c�4�t|��\}}}}|dkrtd���||dz
z}	t|��t|j|j��fS#t$r1t|��t|��t|��zfcYSwxYw)zFIn one pass, compute the mean and sample standard deviation as floats.r}r�r4)r\rrfr�rnror_)rFrOr�r�r:r�s      r2�_mean_stdevr��s�����Y�Y�N�A�r�4���1�u�u��G�H�H�H�
��A��,�C�4��T�{�{�/��
�s��O�O�O�O���4�4�4��T�{�{�E�$�K�K�%��)�)�3�3�3�3�3�4���s�(A�8B�Bc�>���t|��}t|��|krtd���|dkrtd���t|��|z�t|��|z�t��fd�t||��D����}||dz
zS)apCovariance

    Return the sample covariance of two inputs *x* and *y*. Covariance
    is a measure of the joint variability of two inputs.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
    >>> covariance(x, y)
    0.75
    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> covariance(x, z)
    -7.5
    >>> covariance(z, x)
    -7.5

    zDcovariance requires that both inputs have same number of data pointsr}z,covariance requires at least two data pointsc3�4�K�|]\}}|�z
|�z
zV��dSr6r0�r8�xi�yir��ybars   ��r2r;zcovariance.<locals>.<genexpr>��4�����A�A�V�R���T�	�b�4�i�(�A�A�A�A�A�Ar1r4)r�rr%r�)rS�yr:�sxyr�r�s    @@r2rr�s�����"	�A���A�
�1�v�v��{�{��d�e�e�e��1�u�u��L�M�M�M���7�7�Q�;�D���7�7�Q�;�D�
�A�A�A�A�A�s�1�a�y�y�A�A�A�
A�
A�C��!�a�%�=�r1c�����t|��}t|��|krtd���|dkrtd���t|��|z�t|��|z�t��fd�t||��D����}t��fd�|D����}t��fd�|D����}	|t	||z��zS#t
$rtd���wxYw)aPearson's correlation coefficient

    Return the Pearson's correlation coefficient for two inputs. Pearson's
    correlation coefficient *r* takes values between -1 and +1. It measures the
    strength and direction of the linear relationship, where +1 means very
    strong, positive linear relationship, -1 very strong, negative linear
    relationship, and 0 no linear relationship.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> correlation(x, x)
    1.0
    >>> correlation(x, y)
    -1.0

    zEcorrelation requires that both inputs have same number of data pointsr}z-correlation requires at least two data pointsc3�4�K�|]\}}|�z
|�z
zV��dSr6r0r�s   ��r2r;zcorrelation.<locals>.<genexpr>�r�r1c3�,�K�|]}|�z
x��zV��dSr6r0�r8r�r9r�s  ��r2r;zcorrelation.<locals>.<genexpr>��0�����0�0��R�$�Y���!�#�0�0�0�0�0�0r1c3�,�K�|]}|�z
x��zV��dSr6r0)r8r�r9r�s  ��r2r;zcorrelation.<locals>.<genexpr>�r�r1z&at least one of the inputs is constant)r�rr%r�rr�)	rSr�r:r�r[�syyr9r�r�s	      @@@r2rr�s&�����"	�A���A�
�1�v�v��{�{��e�f�f�f��1�u�u��M�N�N�N���7�7�Q�;�D���7�7�Q�;�D�
�A�A�A�A�A�s�1�a�y�y�A�A�A�
A�
A�C�
�0�0�0�0�0�a�0�0�0�
0�
0�C�
�0�0�0�0�0�a�0�0�0�
0�
0�C�H��T�#��)�_�_�$�$���H�H�H��F�G�G�G�H���s�C&�&D�LinearRegression��slope�	interceptF)�proportionalc�p��	�
�t|��}t|��|krtd���|dkrtd���|rAtd�t||��D����}td�|D����}njt|��|z�	t|��|z�
t�	�
fd�t||��D����}t��	fd�|D����}	||z}n#t$rtd���wxYw|rd	n�
|�	zz
}t||�
��S)a�Slope and intercept for simple linear regression.

    Return the slope and intercept of simple linear regression
    parameters estimated using ordinary least squares. Simple linear
    regression describes relationship between an independent variable
    *x* and a dependent variable *y* in terms of a linear function:

        y = slope * x + intercept + noise

    where *slope* and *intercept* are the regression parameters that are
    estimated, and noise represents the variability of the data that was
    not explained by the linear regression (it is equal to the
    difference between predicted and actual values of the dependent
    variable).

    The parameters are returned as a named tuple.

    >>> x = [1, 2, 3, 4, 5]
    >>> noise = NormalDist().samples(5, seed=42)
    >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
    >>> linear_regression(x, y)  #doctest: +ELLIPSIS
    LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)

    If *proportional* is true, the independent variable *x* and the
    dependent variable *y* are assumed to be directly proportional.
    The data is fit to a line passing through the origin.

    Since the *intercept* will always be 0.0, the underlying linear
    function simplifies to:

        y = slope * x + noise

    >>> y = [3 * x[i] + noise[i] for i in range(5)]
    >>> linear_regression(x, y, proportional=True)  #doctest: +ELLIPSIS
    LinearRegression(slope=3.02447542484..., intercept=0.0)

    zKlinear regression requires that both inputs have same number of data pointsr}z3linear regression requires at least two data pointsc3�&K�|]\}}||zV��
dSr6r0)r8r�r�s   r2r;z$linear_regression.<locals>.<genexpr>/s*����3�3�v�r�2�2��7�3�3�3�3�3�3r1c3� K�|]	}||zV��
dSr6r0)r8r�s  r2r;z$linear_regression.<locals>.<genexpr>0s&����'�'�r�2��7�'�'�'�'�'�'r1c3�4�K�|]\}}|�z
|�z
zV��dSr6r0r�s   ��r2r;z$linear_regression.<locals>.<genexpr>4s4�����E�E���R�B��I�"�t�)�,�E�E�E�E�E�Er1c3�,�K�|]}|�z
x��zV��dSr6r0r�s  ��r2r;z$linear_regression.<locals>.<genexpr>5s0�����4�4�B��d��N�A�a�'�4�4�4�4�4�4r1z
x is constant�r�)r�rr%r�r�r�)rSr�r�r:r�r[r�r�r9r�r�s        @@@r2r	r	sf�����L	�A���A�
�1�v�v��{�{��k�l�l�l��1�u�u��S�T�T�T��5��3�3��Q����3�3�3�3�3���'�'�Q�'�'�'�'�'����A�w�w��{���A�w�w��{���E�E�E�E�E�3�q�!�9�9�E�E�E�E�E���4�4�4�4�4�!�4�4�4�4�4��/��c�	�����/�/�/��o�.�.�.�/����#�<�������)<�I��%�9�=�=�=�=s�8C>�>Dc��|dz
}t|��dkrpd||zz
}d|zdz|zdz|zdz|zdz|zd	z|zd
z|zdz|z}d|zd
z|zdz|zdz|zdz|zdz|zdz|zdz}||z}|||zzS|dkr|nd|z
}tt|����}|dkr^|dz
}d|zdz|zdz|zdz|zdz|zdz|zdz|zdz}d|zd z|zd!z|zd"z|zd#z|zd$z|zd%z|zdz}n]|dz
}d&|zd'z|zd(z|zd)z|zd*z|zd+z|zd,z|zd-z}d.|zd/z|zd0z|zd1z|zd2z|zd3z|zd4z|zdz}||z}|dkr|}|||zzS)5N��?g333333�?g��Q��?g^�}o)��@g�E.k�R�@g ��Ul�@g*u��>l�@g�N����@g�"]Ξ@gnC���`@gu��@giK��~j�@gv��|E�@g��d�|1�@gfR��r��@g��u.2�@g���~y�@g�n8(E@r�r�g@g�������?g鬷�ZaI?gg�El�D�?g7\�����?g�uS�S�?g�=�.
@gj%b�@g���Hw�@gjR�e�?g�9dh?
>g('߿��A?g��~z �?g@�3��?gɅ3��?g3fR�x�?gI�F��l@g����t��>g*�Y��n�>gESB\T?g�N;A+�?g�UR1��?gE�F���?gP�n��@g&�>���@g����i�<g�@�F�>g�tcI,\�>g�ŝ���I?g*F2�v�?g�C4�?g��O�1�?)r rr$)�pr��sigmar��rr�r�rSs        r2�_normal_dist_inv_cdfr�As���	
�C��A��A�w�w�%����q�1�u���0�1�4�0�1�45�6�0�1�45�6�1�1�56�6�1�	1�56�	6�
1�1�
56�6�1�
1�56�
6�1�1�56�6��1�1�4�0�1�45�6�0�1�45�6�1�1�56�6�1�	1�56�	6�
1�1�
56�6�1�
1�56�
6����
�#�I���Q��Y���
�#�X�X���3��7�A��c�!�f�f�W�
�
�A��C�x�x�
��G��1�A�5�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7�2�2��2�A�5�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7�����
��G��1�A�5�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7�2�2��3�Q�6�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7����	�c�	�A��3�w�w�
�B��
��U���r1)r�c�*�eZdZdZddd�Zd$d�Zed���Zd	d
�d�Zd�Z	d
�Z
d�Zd%d�Zd�Z
d�Zed���Zed���Zed���Zed���Zed���Zd�Zd�Zd�Zd�Zd�Zd�ZeZd�ZeZd�Zd �Zd!�Z d"�Z!d#�Z"d	S)&rz(Normal distribution of a random variablez(Arithmetic mean of a normal distributionz+Standard deviation of a normal distribution��_mu�_sigmar�r�c��|dkrtd���t|��|_t|��|_dS)zDNormalDist where mu is the mean and sigma is the standard deviation.r�zsigma must be non-negativeN)rrfrr)�selfr�r�s   r2�__init__zNormalDist.__init__�s8���3�;�;�!�">�?�?�?���9�9����E�l�l����r1c�&�|t|���S)z5Make a normal distribution instance from sample data.)r�)�clsrFs  r2�from_sampleszNormalDist.from_samples�s���s�K��%�%�&�&r1N)�seedc�����|�tjntj|��j�|j|jc�����fd�t|��D��S)z=Generate *n* samples for a given mean and standard deviation.Nc�(��g|]}�������Sr0r0)r8r��gaussr�r�s  ���r2r�z&NormalDist.samples.<locals>.<listcomp>�s%���3�3�3�Q���b�%� � �3�3�3r1)�randomr�Randomrrr�)rr:r	rr�r�s   @@@r2�sampleszNormalDist.samples�sV����� $�����&�-��2E�2E�2K���H�d�k�	��E�3�3�3�3�3�3�%��(�(�3�3�3�3r1c��|j|jz}|std���||jz
}t||zd|zz��t	t
|z��zS)z4Probability density function.  P(x <= X < x+dx) / dxz$pdf() not defined when sigma is zerog�)rrrr!rr#)rrSr�diffs    r2�pdfzNormalDist.pdf�s_���;���,���	J�!�"H�I�I�I��4�8�|���4�$�;�$��/�2�3�3�d�3��>�6J�6J�J�Jr1c��|jstd���ddt||jz
|jtzz��zzS)z,Cumulative distribution function.  P(X <= x)z$cdf() not defined when sigma is zeror�r�)rrr"r�_SQRT2�rrSs  r2�cdfzNormalDist.cdf�sF���{�	J�!�"H�I�I�I��c�C��T�X��$�+��2F� G�H�H�H�I�Ir1c��|dks|dkrtd���|jdkrtd���t||j|j��S)aSInverse cumulative distribution function.  x : P(X <= x) = p

        Finds the value of the random variable such that the probability of
        the variable being less than or equal to that value equals the given
        probability.

        This function is also called the percent point function or quantile
        function.
        r�r�z$p must be in the range 0.0 < p < 1.0z-cdf() not defined when sigma at or below zero)rrr�r)rr�s  r2�inv_cdfzNormalDist.inv_cdf�sV��
��8�8�q�C�x�x�!�"H�I�I�I��;�#���!�"Q�R�R�R�#�A�t�x���=�=�=r1r�c�@�����fd�td���D��S)anDivide into *n* continuous intervals with equal probability.

        Returns a list of (n - 1) cut points separating the intervals.

        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
        Set *n* to 100 for percentiles which gives the 99 cuts points that
        separate the normal distribution in to 100 equal sized groups.
        c�@��g|]}��|�z����Sr0)r)r8r�r:rs  ��r2r�z(NormalDist.quantiles.<locals>.<listcomp>�s)���9�9�9�����Q��U�#�#�9�9�9r1r4)r�)rr:s``r2rzNormalDist.quantiles�s+����:�9�9�9�9�U�1�a�[�[�9�9�9�9r1c	�
�t|t��std���||}}|j|jf|j|jfkr||}}|j|j}}|r|st
d���||z
}t|j|jz
��}|s%dt|d|jztzz��z
S|j|z|j|zz
}|j|jzt||z|t||z��zz��z}	||	z|z}
||	z
|z}dt|�|
��|�|
��z
��t|�|��|�|��z
��zz
S)a�Compute the overlapping coefficient (OVL) between two normal distributions.

        Measures the agreement between two normal probability distributions.
        Returns a value between 0.0 and 1.0 giving the overlapping area in
        the two underlying probability density functions.

            >>> N1 = NormalDist(2.4, 1.6)
            >>> N2 = NormalDist(3.2, 2.0)
            >>> N1.overlap(N2)
            0.8035050657330205
        z$Expected another NormalDist instancez(overlap() not defined when sigma is zeror�r+)
r�rrgrrrrr r"rrr$r)r�other�X�Y�X_var�Y_var�dvr�r{�b�x1�x2s            r2�overlapzNormalDist.overlap�s��� �%��,�,�	D��B�C�C�C��U�1��
�H�a�e����!�%�0�0�0��a�q�A��z�1�:�u���	N�E�	N�!�"L�M�M�M�
�U�]��
�!�%�!�%�-�
 �
 ���	=���R�3���>�F�#:�;�<�<�<�<�
�E�E�M�A�E�E�M�)��
�H�q�x��$�r�B�w��c�%�%�-�6H�6H�1H�'H�"I�"I�I���!�e�r�\���!�e�r�\���d�1�5�5��9�9�q�u�u�R�y�y�0�1�1�D����r���Q�U�U�2�Y�Y�9N�4O�4O�O�P�Pr1c�R�|jstd���||jz
|jzS)z�Compute the Standard Score.  (x - mean) / stdev

        Describes *x* in terms of the number of standard deviations
        above or below the mean of the normal distribution.
        z'zscore() not defined when sigma is zero)rrrrs  r2�zscorezNormalDist.zscore�s1���{�	M�!�"K�L�L�L��D�H����+�+r1c��|jS)z+Arithmetic mean of the normal distribution.�r�rs r2r
zNormalDist.mean����x�r1c��|jS)z,Return the median of the normal distributionr)r*s r2rzNormalDist.median	r+r1c��|jS)z�Return the mode of the normal distribution

        The mode is the value x where which the probability density
        function (pdf) takes its maximum value.
        r)r*s r2rzNormalDist.modes���x�r1c��|jS)z.Standard deviation of the normal distribution.�rr*s r2rzNormalDist.stdevs���{�r1c� �|j|jzS)z!Square of the standard deviation.r/r*s r2rzNormalDist.variances���{�T�[�(�(r1c���t|t��r5t|j|jzt|j|j����St|j|z|j��S)ajAdd a constant or another NormalDist instance.

        If *other* is a constant, translate mu by the constant,
        leaving sigma unchanged.

        If *other* is a NormalDist, add both the means and the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        �r�rrrr�r#r$s  r2�__add__zNormalDist.__add__!�U���b�*�%�%�	L��b�f�r�v�o�u�R�Y��	�/J�/J�K�K�K��"�&�2�+�r�y�1�1�1r1c���t|t��r5t|j|jz
t|j|j����St|j|z
|j��S)asSubtract a constant or another NormalDist instance.

        If *other* is a constant, translate by the constant mu,
        leaving sigma unchanged.

        If *other* is a NormalDist, subtract the means and add the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        r2r3s  r2�__sub__zNormalDist.__sub__/r5r1c�\�t|j|z|jt|��z��S)z�Multiply both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        �rrrr r3s  r2�__mul__zNormalDist.__mul__=�'���"�&�2�+�r�y�4��8�8�';�<�<�<r1c�\�t|j|z|jt|��z��S)z�Divide both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        r9r3s  r2�__truediv__zNormalDist.__truediv__Er;r1c�6�t|j|j��S)zReturn a copy of the instance.�rrr�r#s r2�__pos__zNormalDist.__pos__Ms���"�&�"�)�,�,�,r1c�8�t|j|j��S)z(Negates mu while keeping sigma the same.r?r@s r2�__neg__zNormalDist.__neg__Qs���2�6�'�2�9�-�-�-r1c��||z
S)z<Subtract a NormalDist from a constant or another NormalDist.r0r3s  r2�__rsub__zNormalDist.__rsub__Ws���b��z�r1c�z�t|t��stS|j|jko|j|jkS)zFTwo NormalDist objects are equal if their mu and sigma are both equal.)r�r�NotImplementedrrr3s  r2�__eq__zNormalDist.__eq__]s7���"�j�)�)�	"�!�!��v����:�B�I���$:�:r1c�8�t|j|jf��S)zCNormalDist objects hash equal if their mu and sigma are both equal.)�hashrrr*s r2�__hash__zNormalDist.__hash__cs���T�X�t�{�+�,�,�,r1c�P�t|��j�d|j�d|j�d�S)Nz(mu=z, sigma=�))r?r-rrr*s r2�__repr__zNormalDist.__repr__gs.���t�*�*�%�O�O�4�8�O�O�t�{�O�O�O�Or1c��|j|jfSr6rr*s r2�__getstate__zNormalDist.__getstate__js���x���$�$r1c�$�|\|_|_dSr6r)r�states  r2�__setstate__zNormalDist.__setstate__ms�� %����$�+�+�+r1)r�r�)r�)#r-r.r/�__doc__�	__slots__r�classmethodrrrrrrr%r'�propertyr
rrrrr4r7r:r=rArC�__radd__rE�__rmul__rHrKrNrPrSr0r1r2rr�s0������.�.�
:�?���I�
#�#�#�#��'�'��[�'�"&�4�4�4�4�4�K�K�K�J�J�J�>�>�>� 	:�	:�	:�	:� Q� Q� Q�D	,�	,�	,�����X������X������X������X���)�)��X�)�2�2�2�2�2�2�=�=�=�=�=�=�-�-�-�.�.�.��H�����H�;�;�;�-�-�-�P�P�P�%�%�%�&�&�&�&�&r1rr6)rs)r�)KrT�__all__r`r�r
�sys�	fractionsr�decimalr�	itertoolsrr�bisectrrrrr r!r"r#r$r%�	functoolsr&�operatorr'�collectionsr(r)r*rrmrrPr\rbrDrArrrvrEr|�
float_info�mant_digr�__annotations__rfr�r�r
rrrrrr
rrrrrrrrr�rrr�r	r��_statistics�ImportErrorrr0r1r2�<module>rhs���h�h�h�T����.��������
�
�
�
�
�
�
�
�������������%�%�%�%�%�%�%�%�,�,�,�,�,�,�,�,�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�������������8�8�8�8�8�8�8�8�8�8�	
��c����	�	�	�	�	�j�	�	�	�3�3�3�l&�&�&�&�R � � �4�4�4�>+�+�+�\���$���������������3�>�2�2�Q�6���6�6�6�
#�3�
#�3�
#�5�
#�
#�
#�
#��S��S��W�����<"�"�"�,#�#�#�#�LG�G�G�&5,�5,�5,�5,�p+�+�+�0 � � �,���&E+�E+�E+�E+�PB�B�B�<K�K�K�r�;�(4�(4�(4�(4�(4�b)%�)%�)%�)%�X&�&�&�&�R?�?�?�?�$?�?�?�?�$
4�
4�
4�(���8H�H�H�B�:�0�2H�I�I��05�8>�8>�8>�8>�8>�|G�G�G�V	�0�0�0�0�0�0�0���	�	�	��D�	����\&�\&�\&�\&�\&�\&�\&�\&�\&�\&s�D!�!D)�(D)

?>