Your IP : 3.15.195.108
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 1996-2014, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*/
#ifndef CANITER_H
#define CANITER_H
#include "unicode/utypes.h"
#if U_SHOW_CPLUSPLUS_API
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/uobject.h"
#include "unicode/unistr.h"
/**
* \file
* \brief C++ API: Canonical Iterator
*/
/** Should permutation skip characters with combining class zero
* Should be either true or false. This is a compile time option
* @stable ICU 2.4
*/
#ifndef CANITER_SKIP_ZEROES
#define CANITER_SKIP_ZEROES true
#endif
U_NAMESPACE_BEGIN
class Hashtable;
class Normalizer2;
class Normalizer2Impl;
/**
* This class allows one to iterate through all the strings that are canonically equivalent to a given
* string. For example, here are some sample results:
Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
1: \\u0041\\u030A\\u0064\\u0307\\u0327
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
2: \\u0041\\u030A\\u0064\\u0327\\u0307
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
3: \\u0041\\u030A\\u1E0B\\u0327
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
4: \\u0041\\u030A\\u1E11\\u0307
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
5: \\u00C5\\u0064\\u0307\\u0327
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
6: \\u00C5\\u0064\\u0327\\u0307
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
7: \\u00C5\\u1E0B\\u0327
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
8: \\u00C5\\u1E11\\u0307
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
9: \\u212B\\u0064\\u0307\\u0327
= {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
10: \\u212B\\u0064\\u0327\\u0307
= {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
11: \\u212B\\u1E0B\\u0327
= {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
12: \\u212B\\u1E11\\u0307
= {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
*<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
* since it has not been optimized for that situation.
* Note, CanonicalIterator is not intended to be subclassed.
* @author M. Davis
* @author C++ port by V. Weinstein
* @stable ICU 2.4
*/
class U_COMMON_API CanonicalIterator final : public UObject {
public:
/**
* Construct a CanonicalIterator object
* @param source string to get results for
* @param status Fill-in parameter which receives the status of this operation.
* @stable ICU 2.4
*/
CanonicalIterator(const UnicodeString &source, UErrorCode &status);
/** Destructor
* Cleans pieces
* @stable ICU 2.4
*/
virtual ~CanonicalIterator();
/**
* Gets the NFD form of the current source we are iterating over.
* @return gets the source: NOTE: it is the NFD form of source
* @stable ICU 2.4
*/
UnicodeString getSource();
/**
* Resets the iterator so that one can start again from the beginning.
* @stable ICU 2.4
*/
void reset();
/**
* Get the next canonically equivalent string.
* <br><b>Warning: The strings are not guaranteed to be in any particular order.</b>
* @return the next string that is canonically equivalent. A bogus string is returned when
* the iteration is done.
* @stable ICU 2.4
*/
UnicodeString next();
/**
* Set a new source for this iterator. Allows object reuse.
* @param newSource the source string to iterate against. This allows the same iterator to be used
* while changing the source string, saving object creation.
* @param status Fill-in parameter which receives the status of this operation.
* @stable ICU 2.4
*/
void setSource(const UnicodeString &newSource, UErrorCode &status);
#ifndef U_HIDE_INTERNAL_API
/**
* Dumb recursive implementation of permutation.
* TODO: optimize
* @param source the string to find permutations for
* @param skipZeros determine if skip zeros
* @param result the results in a set.
* @param status Fill-in parameter which receives the status of this operation.
* @internal
*/
static void U_EXPORT2 permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status);
#endif /* U_HIDE_INTERNAL_API */
/**
* ICU "poor man's RTTI", returns a UClassID for this class.
*
* @stable ICU 2.2
*/
static UClassID U_EXPORT2 getStaticClassID();
/**
* ICU "poor man's RTTI", returns a UClassID for the actual class.
*
* @stable ICU 2.2
*/
virtual UClassID getDynamicClassID() const override;
private:
// ===================== PRIVATES ==============================
// private default constructor
CanonicalIterator() = delete;
/**
* Copy constructor. Private for now.
* @internal (private)
*/
CanonicalIterator(const CanonicalIterator& other) = delete;
/**
* Assignment operator. Private for now.
* @internal (private)
*/
CanonicalIterator& operator=(const CanonicalIterator& other) = delete;
// fields
UnicodeString source;
UBool done;
// 2 dimensional array holds the pieces of the string with
// their different canonically equivalent representations
UnicodeString **pieces;
int32_t pieces_length;
int32_t *pieces_lengths;
// current is used in iterating to combine pieces
int32_t *current;
int32_t current_length;
// transient fields
UnicodeString buffer;
const Normalizer2 &nfd;
const Normalizer2Impl &nfcImpl;
// we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
UnicodeString *getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status); //private String[] getEquivalents(String segment)
//Set getEquivalents2(String segment);
Hashtable *getEquivalents2(Hashtable *fillinResult, const char16_t *segment, int32_t segLen, UErrorCode &status);
//Hashtable *getEquivalents2(const UnicodeString &segment, int32_t segLen, UErrorCode &status);
/**
* See if the decomposition of cp2 is at segment starting at segmentPos
* (with canonical rearrangement!)
* If so, take the remainder, and return the equivalents
*/
//Set extract(int comp, String segment, int segmentPos, StringBuffer buffer);
Hashtable *extract(Hashtable *fillinResult, UChar32 comp, const char16_t *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status);
//Hashtable *extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status);
void cleanPieces();
};
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_NORMALIZATION */
#endif /* U_SHOW_CPLUSPLUS_API */
#endif